Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 43 x^{2} )( 1 + 11 x + 43 x^{2} )$ |
$1 + 10 x + 75 x^{2} + 430 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.475705518658$, $\pm0.816708498756$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $180$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2365$ | $3512025$ | $6324691120$ | $11684594975625$ | $21606712394790325$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $1900$ | $79548$ | $3417748$ | $146975994$ | $6321656950$ | $271818485118$ | $11688195397348$ | $502592603811684$ | $21611482271309500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=x^6+5 x^5+30 x^4+25 x^3+30 x^2+5 x+1$
- $y^2=32 x^6+30 x^5+22 x^4+26 x^3+18 x^2+6 x+4$
- $y^2=33 x^6+30 x^5+32 x^4+15 x^3+2 x^2+27 x+38$
- $y^2=4 x^6+2 x^5+38 x^4+38 x^3+5 x^2+40 x+16$
- $y^2=26 x^6+11 x^5+15 x^4+24 x^3+38 x^2+20 x+8$
- $y^2=3 x^6+36 x^5+3 x^4+35 x^2+23 x+15$
- $y^2=31 x^6+30 x^5+42 x^4+17 x^3+24 x^2+29 x+24$
- $y^2=40 x^6+40 x^5+28 x^4+29 x^3+4 x^2+29 x+11$
- $y^2=24 x^6+42 x^5+21 x^4+33 x^3+7 x+31$
- $y^2=7 x^6+22 x^5+13 x^4+13 x^2+22 x+7$
- $y^2=23 x^6+35 x^5+4 x^4+x^3+7 x^2+24 x+15$
- $y^2=25 x^6+35 x^5+25 x^4+40 x^3+16 x^2+35 x+37$
- $y^2=39 x^6+5 x^5+40 x^4+34 x^3+38 x^2+24 x+11$
- $y^2=33 x^6+3 x^5+35 x^4+27 x^3+32 x^2+8 x+40$
- $y^2=10 x^6+35 x^5+27 x^4+38 x^3+40 x^2+40 x+40$
- $y^2=40 x^6+39 x^5+4 x^4+34 x^3+32 x^2+9 x+17$
- $y^2=22 x^6+35 x^5+29 x^4+37 x^3+11 x^2+9 x+2$
- $y^2=38 x^6+21 x^5+9 x^4+11 x^3+19 x^2+25 x+42$
- $y^2=15 x^6+14 x^5+33 x^4+19 x^3+25 x^2+7 x+4$
- $y^2=37 x^6+16 x^5+26 x^4+5 x^3+27 x^2+28 x+30$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ab $\times$ 1.43.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.am_dt | $2$ | (not in LMFDB) |
2.43.ak_cx | $2$ | (not in LMFDB) |
2.43.m_dt | $2$ | (not in LMFDB) |