-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2365, 'abvar_counts': [2365, 3512025, 6324691120, 11684594975625, 21606712394790325, 39961488680081337600, 73885323097906509755005, 136613968687945268270375625, 252599329489853101753337187760, 467056166870261336378255042675625], 'abvar_counts_str': '2365 3512025 6324691120 11684594975625 21606712394790325 39961488680081337600 73885323097906509755005 136613968687945268270375625 252599329489853101753337187760 467056166870261336378255042675625 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.475705518657663, 0.816708498755822], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 54, 'curve_counts': [54, 1900, 79548, 3417748, 146975994, 6321656950, 271818485118, 11688195397348, 502592603811684, 21611482271309500], 'curve_counts_str': '54 1900 79548 3417748 146975994 6321656950 271818485118 11688195397348 502592603811684 21611482271309500 ', 'curves': ['y^2=x^6+5*x^5+30*x^4+25*x^3+30*x^2+5*x+1', 'y^2=32*x^6+30*x^5+22*x^4+26*x^3+18*x^2+6*x+4', 'y^2=33*x^6+30*x^5+32*x^4+15*x^3+2*x^2+27*x+38', 'y^2=4*x^6+2*x^5+38*x^4+38*x^3+5*x^2+40*x+16', 'y^2=26*x^6+11*x^5+15*x^4+24*x^3+38*x^2+20*x+8', 'y^2=3*x^6+36*x^5+3*x^4+35*x^2+23*x+15', 'y^2=31*x^6+30*x^5+42*x^4+17*x^3+24*x^2+29*x+24', 'y^2=40*x^6+40*x^5+28*x^4+29*x^3+4*x^2+29*x+11', 'y^2=24*x^6+42*x^5+21*x^4+33*x^3+7*x+31', 'y^2=7*x^6+22*x^5+13*x^4+13*x^2+22*x+7', 'y^2=23*x^6+35*x^5+4*x^4+x^3+7*x^2+24*x+15', 'y^2=25*x^6+35*x^5+25*x^4+40*x^3+16*x^2+35*x+37', 'y^2=39*x^6+5*x^5+40*x^4+34*x^3+38*x^2+24*x+11', 'y^2=33*x^6+3*x^5+35*x^4+27*x^3+32*x^2+8*x+40', 'y^2=10*x^6+35*x^5+27*x^4+38*x^3+40*x^2+40*x+40', 'y^2=40*x^6+39*x^5+4*x^4+34*x^3+32*x^2+9*x+17', 'y^2=22*x^6+35*x^5+29*x^4+37*x^3+11*x^2+9*x+2', 'y^2=38*x^6+21*x^5+9*x^4+11*x^3+19*x^2+25*x+42', 'y^2=15*x^6+14*x^5+33*x^4+19*x^3+25*x^2+7*x+4', 'y^2=37*x^6+16*x^5+26*x^4+5*x^3+27*x^2+28*x+30', 'y^2=11*x^6+13*x^5+36*x^4+31*x^2+38*x+40', 'y^2=36*x^6+3*x^5+24*x^4+31*x^3+24*x^2+38*x+26', 'y^2=36*x^6+8*x^5+21*x^4+37*x^3+35*x^2+20*x+38', 'y^2=24*x^6+12*x^5+13*x^4+41*x^3+23*x^2+19*x+41', 'y^2=24*x^6+30*x^5+11*x^4+23*x^3+11*x^2+30*x+24', 'y^2=24*x^6+11*x^5+20*x^4+25*x^3+37*x^2+24*x+39', 'y^2=35*x^6+28*x^5+19*x^4+14*x^3+10*x^2+19*x+8', 'y^2=x^6+26*x^5+28*x^4+10*x^3+24*x^2+12*x+25', 'y^2=21*x^6+23*x^5+8*x^4+18*x^3+15*x^2+30*x+3', 'y^2=22*x^6+38*x^5+13*x^4+5*x^3+2*x^2+26*x+42', 'y^2=16*x^6+33*x^5+10*x^4+42*x^3+x^2+8*x+33', 'y^2=31*x^6+42*x^4+32*x^3+42*x^2+31', 'y^2=40*x^6+34*x^5+14*x^4+9*x^3+22*x^2+20*x+9', 'y^2=21*x^6+6*x^5+11*x^4+39*x^3+31*x^2+41*x+31', 'y^2=33*x^6+25*x^5+11*x^4+39*x^3+15*x^2+37*x+38', 'y^2=21*x^6+31*x^5+27*x^4+31*x^3+27*x^2+31*x+21', 'y^2=15*x^6+33*x^5+x^4+30*x^3+10*x^2+19*x+34', 'y^2=13*x^6+6*x^5+14*x^4+8*x^3+14*x^2+6*x+13', 'y^2=25*x^6+33*x^5+18*x^4+41*x^3+18*x^2+33*x+25', 'y^2=7*x^6+34*x^5+18*x^4+25*x^3+13*x^2+6*x+12', 'y^2=26*x^6+37*x^5+20*x^4+18*x^3+3*x^2+17*x+15', 'y^2=27*x^6+25*x^5+14*x^4+28*x^3+20*x^2+42*x+14', 'y^2=42*x^6+30*x^5+9*x^4+36*x^3+18*x^2+38*x+28', 'y^2=24*x^6+24*x^5+10*x^4+8*x^3+33*x^2+37*x+38', 'y^2=18*x^6+20*x^5+33*x^4+30*x^3+12*x^2+10*x+1', 'y^2=32*x^6+25*x^5+26*x^4+14*x^3+26*x^2+25*x+32', 'y^2=25*x^6+31*x^5+10*x^4+36*x^3+8*x^2+27*x+10', 'y^2=16*x^6+24*x^5+29*x^4+15*x^3+36*x^2+12*x+17', 'y^2=15*x^6+2*x^5+x^4+2*x^3+22*x^2+3*x+20', 'y^2=22*x^6+29*x^5+8*x^4+41*x^3+8*x^2+29*x+22', 'y^2=38*x^6+3*x^4+36*x^3+22*x^2+12*x+15', 'y^2=x^6+10*x^5+x^4+24*x^2+20*x+41', 'y^2=25*x^6+35*x^5+33*x^4+2*x^3+4*x^2+x+14', 'y^2=11*x^6+20*x^5+40*x^4+26*x^3+40*x^2+20*x+11', 'y^2=41*x^6+3*x^5+30*x^4+4*x^2+9*x+7', 'y^2=x^6+9*x^5+17*x^3+9*x+1', 'y^2=12*x^6+4*x^5+18*x^4+41*x^3+9*x^2+21*x+36', 'y^2=28*x^6+14*x^5+2*x^4+19*x^3+30*x^2+28*x+15', 'y^2=19*x^6+19*x^5+37*x^4+18*x^3+3*x^2+16*x+9', 'y^2=14*x^6+3*x^5+42*x^4+10*x^3+23*x^2+13*x+35', 'y^2=5*x^6+18*x^5+20*x^4+7*x^3+x^2+20*x+7', 'y^2=8*x^6+28*x^5+31*x^4+35*x^3+31*x^2+28*x+8', 'y^2=39*x^6+10*x^5+17*x^4+31*x^3+22*x^2+15*x+14', 'y^2=23*x^6+16*x^5+40*x^4+17*x^3+8*x^2+36*x+9', 'y^2=40*x^6+8*x^5+22*x^4+3*x^3+3*x^2+7*x+21', 'y^2=6*x^6+38*x^5+35*x^4+21*x^3+25*x^2+29*x+27', 'y^2=40*x^6+42*x^5+30*x^4+8*x^3+30*x^2+42*x+40', 'y^2=40*x^6+36*x^5+18*x^4+39*x^3+13*x^2+17*x+22', 'y^2=37*x^6+14*x^5+18*x^3+22*x^2+11*x+38', 'y^2=38*x^6+26*x^5+4*x^4+42*x^3+15*x^2+38*x+15', 'y^2=10*x^6+34*x^5+7*x^4+41*x^3+2*x^2+30*x+11', 'y^2=10*x^6+x^5+41*x^4+19*x^3+16*x^2+16*x+14', 'y^2=16*x^6+38*x^5+13*x^4+24*x^3+23*x^2+7*x+20', 'y^2=16*x^6+18*x^5+25*x^4+31*x^3+x^2+4*x+10', 'y^2=10*x^6+31*x^5+11*x^4+26*x^3+18*x^2+12*x+33', 'y^2=5*x^6+x^5+2*x^4+31*x^3+38*x^2+22*x+24', 'y^2=11*x^6+34*x^5+20*x^4+x^3+17*x^2+40*x+15', 'y^2=26*x^6+13*x^5+27*x^4+39*x^3+39*x^2+15*x+17', 'y^2=28*x^6+4*x^5+21*x^4+17*x^3+22*x^2+22*x+31', 'y^2=14*x^6+16*x^5+4*x^4+27*x^3+4*x^2+16*x+14', 'y^2=25*x^6+12*x^5+41*x^4+16*x^3+22*x^2+36*x+1', 'y^2=4*x^6+23*x^5+3*x^4+9*x^3+24*x^2+26*x+22', 'y^2=12*x^6+3*x^5+27*x^4+17*x^3+6*x^2+20*x+33', 'y^2=13*x^6+5*x^5+10*x^4+39*x^3+15*x^2+14*x+23', 'y^2=24*x^6+36*x^5+5*x^4+21*x^3+37*x^2+28*x+14', 'y^2=12*x^6+17*x^5+5*x^4+28*x^3+7*x^2+15*x+39', 'y^2=38*x^6+20*x^5+19*x^4+34*x^3+11*x^2+31*x+28', 'y^2=34*x^6+16*x^5+7*x^4+30*x^3+7*x^2+16*x+34', 'y^2=25*x^6+28*x^5+31*x^4+11*x^3+10*x^2+7*x+38', 'y^2=16*x^6+35*x^5+42*x^4+15*x^3+36*x^2+16*x+41', 'y^2=13*x^6+36*x^5+26*x^4+24*x^3+26*x^2+36*x+13', 'y^2=16*x^6+27*x^5+4*x^4+36*x^3+27*x^2+39*x+7', 'y^2=31*x^6+9*x^5+26*x^4+18*x^3+24*x+25', 'y^2=9*x^6+37*x^5+3*x^4+7*x^3+40*x^2+12*x+41', 'y^2=41*x^6+7*x^5+5*x^4+13*x^3+28*x^2+42*x+35', 'y^2=x^6+13*x^5+30*x^4+26*x^3+25*x^2+14*x+39', 'y^2=7*x^6+30*x^5+31*x^4+13*x^3+9*x^2+x+1', 'y^2=12*x^6+9*x^5+x^4+10*x^3+18*x^2+2*x+30', 'y^2=13*x^6+19*x^5+21*x^4+19*x^2+12*x+30', 'y^2=41*x^6+38*x^5+32*x^4+12*x^3+2*x^2+13*x+6', 'y^2=11*x^6+9*x^5+31*x^4+14*x^2+17*x+27', 'y^2=6*x^6+18*x^5+24*x^4+38*x^3+22*x^2+8*x+28', 'y^2=14*x^6+35*x^5+23*x^4+39*x^3+23*x^2+35*x+14', 'y^2=9*x^6+41*x^5+16*x^4+30*x^3+7*x^2+22*x+42', 'y^2=6*x^6+23*x^5+42*x^4+10*x^3+3*x^2+25*x+36', 'y^2=27*x^6+2*x^5+21*x^4+3*x^3+39*x^2+14*x+22', 'y^2=17*x^6+41*x^5+41*x^4+31*x^3+6*x^2+4*x+22', 'y^2=24*x^6+26*x^5+35*x^4+35*x^3+2*x^2+7*x+35', 'y^2=41*x^6+19*x^5+10*x^4+36*x^3+15*x^2+20*x+30', 'y^2=5*x^6+10*x^5+5*x^4+26*x^3+40*x^2+30*x+40', 'y^2=40*x^6+39*x^5+5*x^4+38*x^3+3*x^2+3*x+26', 'y^2=23*x^6+35*x^5+6*x^4+18*x^3+40*x^2+37*x+12', 'y^2=27*x^6+28*x^5+37*x^4+40*x^3+42*x^2+16*x+11', 'y^2=40*x^6+9*x^5+11*x^4+11*x^2+9*x+40', 'y^2=34*x^6+42*x^5+27*x^4+28*x^3+35*x^2+23*x+14', 'y^2=25*x^6+9*x^5+39*x^4+3*x^3+34*x^2+41*x+24', 'y^2=30*x^6+34*x^5+16*x^4+3*x^3+16*x^2+34*x+30', 'y^2=31*x^6+23*x^5+15*x^4+31*x^3+10*x^2+15*x+14', 'y^2=6*x^6+12*x^5+13*x^4+19*x^3+22*x^2+20*x+12', 'y^2=10*x^6+36*x^5+27*x^4+9*x^3+34*x^2+13*x+2', 'y^2=15*x^6+40*x^5+41*x^4+4*x^3+41*x^2+40*x+15', 'y^2=24*x^6+28*x^5+2*x^4+33*x^3+2*x^2+28*x+24', 'y^2=6*x^6+4*x^5+19*x^3+35*x^2+20*x+3', 'y^2=22*x^6+x^5+34*x^4+24*x^3+8*x^2+16*x+1', 'y^2=11*x^6+28*x^5+18*x^4+24*x^3+14*x^2+22*x+17', 'y^2=35*x^6+19*x^5+6*x^4+3*x^3+30*x^2+27*x+1', 'y^2=30*x^6+5*x^5+42*x^4+32*x^3+28*x^2+x+16', 'y^2=17*x^6+29*x^5+14*x^4+38*x^3+32*x^2+30*x+26', 'y^2=42*x^6+31*x^5+39*x^4+36*x^3+14*x^2+27*x+35', 'y^2=36*x^6+10*x^5+36*x^4+33*x^3+36*x^2+10*x+36', 'y^2=14*x^6+19*x^5+28*x^4+36*x^3+9*x^2+34*x+11', 'y^2=29*x^6+33*x^5+7*x^4+10*x^2+38*x+37', 'y^2=31*x^6+33*x^5+8*x^4+38*x^3+29*x^2+15*x+8', 'y^2=10*x^6+37*x^5+33*x^4+42*x^3+5*x^2+17*x+9', 'y^2=7*x^6+14*x^5+10*x^4+21*x^3+22*x^2+22*x+24', 'y^2=26*x^6+27*x^5+32*x^4+9*x^3+20*x^2+12*x+28', 'y^2=10*x^6+37*x^5+37*x^4+8*x^3+13*x^2+23*x+39', 'y^2=39*x^6+24*x^5+28*x^4+19*x^3+19*x^2+14*x+38', 'y^2=20*x^6+41*x^5+34*x^4+29*x^3+9*x^2+15*x+21', 'y^2=30*x^6+18*x^5+28*x^4+20*x^3+42*x^2+16*x+22', 'y^2=11*x^6+4*x^5+16*x^4+9*x^3+16*x^2+24*x+29', 'y^2=24*x^6+32*x^5+40*x^4+30*x^3+29*x^2+10*x+2', 'y^2=32*x^6+7*x^5+33*x^4+4*x^3+x^2+34*x+40', 'y^2=30*x^6+22*x^5+10*x^4+26*x^3+37*x^2+19*x+29', 'y^2=23*x^6+36*x^5+9*x^4+40*x^3+16*x^2+26*x+3', 'y^2=20*x^6+26*x^5+30*x^4+32*x^3+22*x^2+18*x+11', 'y^2=17*x^6+12*x^5+18*x^4+19*x^3+13*x^2+12*x+10', 'y^2=33*x^6+4*x^5+17*x^3+2*x^2+12*x+36', 'y^2=22*x^6+22*x^5+18*x^4+15*x^3+19*x^2+18*x+7', 'y^2=7*x^6+13*x^5+11*x^4+2*x^3+11*x^2+13*x+7', 'y^2=25*x^6+x^5+42*x^4+30*x^3+42*x^2+41*x+35', 'y^2=10*x^6+26*x^5+39*x^4+23*x^3+24*x^2+15*x+37', 'y^2=35*x^6+31*x^5+32*x^4+7*x^3+40*x^2+24*x+16', 'y^2=42*x^6+15*x^5+23*x^4+38*x^3+8*x^2+40*x+9', 'y^2=16*x^6+39*x^5+17*x^4+21*x^3+33*x+21', 'y^2=19*x^6+41*x^5+21*x^4+29*x^3+39*x^2+7*x+14', 'y^2=5*x^6+3*x^5+33*x^4+42*x^3+33*x^2+3*x+5', 'y^2=5*x^6+39*x^5+28*x^4+29*x^3+28*x^2+39*x+5', 'y^2=28*x^6+12*x^5+8*x^4+42*x^3+17*x^2+26*x+3', 'y^2=25*x^6+42*x^5+30*x^4+37*x^3+30*x^2+42*x+25', 'y^2=10*x^6+5*x^5+13*x^4+25*x^2+24*x+32', 'y^2=27*x^6+20*x^5+33*x^4+34*x^3+7*x^2+10*x+1', 'y^2=8*x^6+14*x^5+19*x^4+40*x^3+24*x^2+36*x+6', 'y^2=27*x^6+23*x^5+14*x^4+13*x^3+14*x^2+23*x+27', 'y^2=10*x^6+42*x^4+35*x^3+42*x^2+10', 'y^2=38*x^6+27*x^5+9*x^4+16*x^3+28*x^2+19*x+11', 'y^2=42*x^6+36*x^5+27*x^4+34*x^3+33*x^2+25*x+6', 'y^2=6*x^6+41*x^5+13*x^4+6*x^3+19*x^2+5*x+40', 'y^2=28*x^6+37*x^5+29*x^4+38*x^3+29*x^2+37*x+28', 'y^2=17*x^6+18*x^5+25*x^4+27*x^3+21*x^2+21*x+38', 'y^2=17*x^6+16*x^5+3*x^4+33*x^3+6*x^2+36*x+39', 'y^2=14*x^6+34*x^5+37*x^4+37*x^3+12*x^2+36*x+9', 'y^2=36*x^6+36*x^5+25*x^4+23*x^2+23*x+34', 'y^2=12*x^6+30*x^5+23*x^4+9*x^3+20*x^2+19*x+40', 'y^2=24*x^6+15*x^5+36*x^4+12*x^3+38*x^2+13*x+36', 'y^2=34*x^6+33*x^5+14*x^4+8*x^3+14*x^2+33*x+34', 'y^2=28*x^6+40*x^5+22*x^4+32*x^3+31*x^2+9*x+27', 'y^2=40*x^6+19*x^5+22*x^3+24*x^2+5*x+15', 'y^2=9*x^6+2*x^5+6*x^4+3*x^3+26*x^2+21*x+7', 'y^2=5*x^6+34*x^5+18*x^4+6*x^3+42*x^2+13*x+35'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 12, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.19.1', '2.0.51.1'], 'geometric_splitting_field': '4.0.938961.1', 'geometric_splitting_polynomials': [[64, 0, 35, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 180, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 180, 'label': '2.43.k_cx', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.19.1', '2.0.51.1'], 'p': 43, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 10, 75, 430, 1849], 'poly_str': '1 10 75 430 1849 ', 'primitive_models': [], 'q': 43, 'real_poly': [1, 10, -11], 'simple_distinct': ['1.43.ab', '1.43.l'], 'simple_factors': ['1.43.abA', '1.43.lA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,F^2-F+41', '3,11*F+14'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.938961.1', 'splitting_polynomials': [[64, 0, 35, 0, 1]], 'twist_count': 4, 'twists': [['2.43.am_dt', '2.1849.by_bbv', 2], ['2.43.ak_cx', '2.1849.by_bbv', 2], ['2.43.m_dt', '2.1849.by_bbv', 2]], 'weak_equivalence_count': 15, 'zfv_index': 432, 'zfv_index_factorization': [[2, 4], [3, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 8721, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,F^2-F+41', '3,11*F+14']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 33064
{'base_label': '2.43.k_cx', 'extension_degree': 1, 'extension_label': '1.43.ab', 'multiplicity': 1}
-
id: 33065
{'base_label': '2.43.k_cx', 'extension_degree': 1, 'extension_label': '1.43.l', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.19.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.43.ab', 'galois_group': '2T1', 'places': [['28', '1'], ['14', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.51.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.43.l', 'galois_group': '2T1', 'places': [['5', '1'], ['37', '1']]}