L(s) = 1 | + 3-s + 9-s + 4·11-s − 4·17-s + 12·19-s − 6·25-s + 27-s + 4·33-s − 12·41-s + 4·43-s − 6·49-s − 4·51-s + 12·57-s + 8·59-s − 12·73-s − 6·75-s + 81-s + 4·83-s + 24·89-s − 12·97-s + 4·99-s + 24·113-s − 6·121-s − 12·123-s + 127-s + 4·129-s + 131-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 1.20·11-s − 0.970·17-s + 2.75·19-s − 6/5·25-s + 0.192·27-s + 0.696·33-s − 1.87·41-s + 0.609·43-s − 6/7·49-s − 0.560·51-s + 1.58·57-s + 1.04·59-s − 1.40·73-s − 0.692·75-s + 1/9·81-s + 0.439·83-s + 2.54·89-s − 1.21·97-s + 0.402·99-s + 2.25·113-s − 0.545·121-s − 1.08·123-s + 0.0887·127-s + 0.352·129-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.077534149\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.077534149\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.86702870582686351971112714988, −7.35049861374360485095925204446, −7.04452864015870064786456824612, −6.64582871229188279707731071299, −6.15209650774757189668687296107, −5.64856520770522339092245806644, −5.20186974142274193377185407761, −4.71455088705051495899696434294, −4.18991038285219330643504687256, −3.65201022226537207044264106927, −3.32376813133366639732036493331, −2.82156489045048743210148737326, −1.96295783561452911263517215517, −1.57233858610084808926333023767, −0.73207926381039395817779208925,
0.73207926381039395817779208925, 1.57233858610084808926333023767, 1.96295783561452911263517215517, 2.82156489045048743210148737326, 3.32376813133366639732036493331, 3.65201022226537207044264106927, 4.18991038285219330643504687256, 4.71455088705051495899696434294, 5.20186974142274193377185407761, 5.64856520770522339092245806644, 6.15209650774757189668687296107, 6.64582871229188279707731071299, 7.04452864015870064786456824612, 7.35049861374360485095925204446, 7.86702870582686351971112714988