Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 19 x^{2} )( 1 - 4 x + 19 x^{2} )$ |
$1 - 12 x + 70 x^{2} - 228 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.130073469147$, $\pm0.348268167089$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $12$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $192$ | $129024$ | $47791296$ | $17020846080$ | $6129255605952$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $8$ | $358$ | $6968$ | $130606$ | $2475368$ | $47043286$ | $893917592$ | $16984025566$ | $322689710792$ | $6131069428678$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=12 x^6+11 x^5+9 x^4+15 x^3+9 x^2+11 x+12$
- $y^2=15 x^6+2 x^5+15 x^4+16 x^3+2 x^2+11 x+5$
- $y^2=11 x^6+3 x^5+x^4+18 x^3+17 x^2+6$
- $y^2=x^6+4 x^5+10 x^4+12 x^3+10 x^2+4 x+1$
- $y^2=17 x^6+15 x^5+7 x^4+13 x^3+9 x^2+8 x+6$
- $y^2=17 x^6+16 x^5+11 x^4+17 x^3+17 x^2+17 x+8$
- $y^2=10 x^6+10 x^5+15 x^4+6 x^3+10 x^2+15 x+10$
- $y^2=11 x^5+3 x^4+5 x^3+3 x^2+11 x$
- $y^2=15 x^6+2 x^5+7 x^4+17 x^3+7 x^2+2 x+15$
- $y^2=7 x^6+13 x^5+11 x^4+9 x^3+x^2+10 x+7$
- $y^2=8 x^6+11 x^5+16 x^4+11 x^3+4 x^2+9 x+12$
- $y^2=8 x^6+4 x^5+5 x^4+8 x^3+6 x^2+5 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.ai $\times$ 1.19.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.