| L(s) = 1 | + 2-s + 3·3-s − 4-s + 3·6-s − 3·8-s + 6·9-s − 4·11-s − 3·12-s − 16-s − 3·17-s + 6·18-s − 4·19-s − 4·22-s − 9·24-s + 9·27-s + 5·32-s − 12·33-s − 3·34-s − 6·36-s − 4·38-s + 6·41-s − 3·43-s + 4·44-s − 3·48-s + 6·49-s − 9·51-s + 9·54-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1.73·3-s − 1/2·4-s + 1.22·6-s − 1.06·8-s + 2·9-s − 1.20·11-s − 0.866·12-s − 1/4·16-s − 0.727·17-s + 1.41·18-s − 0.917·19-s − 0.852·22-s − 1.83·24-s + 1.73·27-s + 0.883·32-s − 2.08·33-s − 0.514·34-s − 36-s − 0.648·38-s + 0.937·41-s − 0.457·43-s + 0.603·44-s − 0.433·48-s + 6/7·49-s − 1.26·51-s + 1.22·54-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.776629850\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.776629850\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.100609065987188346510245888420, −7.894692628318564018906848816678, −7.25582303227646462347758408057, −6.79162347961404911683296644443, −6.42240125609168154076813217252, −5.70241184086122364263911726449, −5.27606694649753023640449201608, −4.80849264132663190901587265280, −4.28758531005647428201827339308, −3.83433942817620845102028772501, −3.53939234610410633424604216411, −2.76230675526556535116761131555, −2.42130317464945476027387773472, −2.01194530129340629997058028177, −0.69314375282985718466281352658,
0.69314375282985718466281352658, 2.01194530129340629997058028177, 2.42130317464945476027387773472, 2.76230675526556535116761131555, 3.53939234610410633424604216411, 3.83433942817620845102028772501, 4.28758531005647428201827339308, 4.80849264132663190901587265280, 5.27606694649753023640449201608, 5.70241184086122364263911726449, 6.42240125609168154076813217252, 6.79162347961404911683296644443, 7.25582303227646462347758408057, 7.894692628318564018906848816678, 8.100609065987188346510245888420