Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 103 x^{2} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.379161520389$, $\pm0.620838479611$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-5}, \sqrt{39})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $182$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $7$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5145$ | $26471025$ | $128099818980$ | $645726798434025$ | $3255243548147453625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $5248$ | $357912$ | $25410628$ | $1804229352$ | $128099354038$ | $9095120158392$ | $645753632337028$ | $45848500718449032$ | $3255243545285026048$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 182 curves (of which all are hyperelliptic):
- $y^2=67 x^6+27 x^5+38 x^4+5 x^3+34 x^2+65 x+62$
- $y^2=43 x^6+47 x^5+53 x^4+35 x^3+25 x^2+29 x+8$
- $y^2=58 x^6+37 x^4+34 x^3+15 x^2+56 x+23$
- $y^2=51 x^6+46 x^4+25 x^3+34 x^2+37 x+19$
- $y^2=54 x^6+55 x^5+62 x^4+19 x^3+46 x^2+x+23$
- $y^2=23 x^6+30 x^5+8 x^4+62 x^3+38 x^2+7 x+19$
- $y^2=61 x^6+12 x^5+68 x^4+43 x^3+70 x^2+65 x+29$
- $y^2=x^6+13 x^5+50 x^4+17 x^3+64 x^2+29 x+61$
- $y^2=6 x^6+27 x^5+34 x^4+47 x^3+5 x^2+7 x+63$
- $y^2=21 x^6+25 x^5+3 x^4+31 x^3+39 x^2+22 x+44$
- $y^2=61 x^6+69 x^5+31 x^4+49 x^3+31 x^2+14 x+8$
- $y^2=x^6+57 x^5+4 x^4+59 x^3+4 x^2+27 x+56$
- $y^2=36 x^6+46 x^5+63 x^4+48 x^3+58 x^2+8 x+35$
- $y^2=47 x^6+60 x^5+65 x^4+60 x^3+69 x^2+44 x+33$
- $y^2=6 x^6+49 x^5+37 x^4+18 x^3+21 x^2+55 x+6$
- $y^2=42 x^6+59 x^5+46 x^4+55 x^3+5 x^2+30 x+42$
- $y^2=37 x^6+47 x^5+24 x^4+x^3+50 x^2+41 x+57$
- $y^2=46 x^6+45 x^5+26 x^4+7 x^3+66 x^2+3 x+44$
- $y^2=4 x^6+33 x^5+36 x^4+38 x^3+27 x^2+18 x+59$
- $y^2=28 x^6+18 x^5+39 x^4+53 x^3+47 x^2+55 x+58$
- and 162 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-5}, \sqrt{39})\). |
| The base change of $A$ to $\F_{71^{2}}$ is 1.5041.dz 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-195}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.a_adz | $4$ | (not in LMFDB) |