Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 4 x + 43 x^{2} )( 1 + 7 x + 43 x^{2} )$ |
| $1 + 3 x + 58 x^{2} + 129 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.401344489543$, $\pm0.679215778419$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $80$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2040$ | $3623040$ | $6312682080$ | $11692057305600$ | $21609061630708200$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $47$ | $1957$ | $79400$ | $3419929$ | $146991977$ | $6321163174$ | $271820220131$ | $11688207083761$ | $502592554426520$ | $21611482253064757$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=41 x^6+x^5+7 x^4+10 x^3+11 x^2+39 x+21$
- $y^2=33 x^6+32 x^5+28 x^4+12 x^3+6 x^2+14 x+28$
- $y^2=18 x^6+24 x^5+2 x^3+6 x^2+23 x+18$
- $y^2=15 x^6+29 x^5+26 x^4+34 x^3+36 x^2+39 x+16$
- $y^2=12 x^6+4 x^5+24 x^4+26 x^3+42 x^2+5 x+24$
- $y^2=11 x^6+30 x^5+22 x^4+24 x^3+36 x^2+18 x+12$
- $y^2=36 x^6+11 x^5+39 x^4+25 x^3+37 x^2+37 x+9$
- $y^2=2 x^6+20 x^5+42 x^4+26 x^3+34 x^2+34 x+23$
- $y^2=11 x^6+32 x^5+27 x^4+18 x^3+12 x^2+14 x+28$
- $y^2=25 x^6+36 x^5+18 x^4+10 x^3+5 x^2+2 x+41$
- $y^2=36 x^6+10 x^5+23 x^4+2 x^3+3 x^2+19 x+20$
- $y^2=11 x^6+5 x^5+22 x^4+10 x^3+17 x^2+37 x+28$
- $y^2=11 x^6+12 x^5+25 x^4+34 x^3+39 x^2+15 x+6$
- $y^2=30 x^6+2 x^5+38 x^4+17 x^3+42 x^2+39 x+18$
- $y^2=20 x^6+8 x^5+10 x^4+19 x^3+17 x^2+28 x+19$
- $y^2=33 x^6+4 x^5+4 x^4+12 x^3+36 x^2+5 x+41$
- $y^2=28 x^6+20 x^5+28 x^4+19 x^3+11 x^2+33 x+14$
- $y^2=5 x^6+39 x^5+14 x^4+31 x^3+34 x^2+26 x+14$
- $y^2=28 x^6+9 x^5+36 x^4+22 x^3+4 x^2+21 x+30$
- $y^2=24 x^6+23 x^5+14 x^4+2 x^3+11 x^2+18 x+6$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.ae $\times$ 1.43.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.al_ek | $2$ | (not in LMFDB) |
| 2.43.ad_cg | $2$ | (not in LMFDB) |
| 2.43.l_ek | $2$ | (not in LMFDB) |