Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 126 x^{2} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.396913954286$, $\pm0.603086045714$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-71})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $322$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6368$ | $40551424$ | $243087096800$ | $1516844506169344$ | $9468276076501634528$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6494$ | $493040$ | $38943294$ | $3077056400$ | $243086738078$ | $19203908986160$ | $1517108942668414$ | $119851595982618320$ | $9468276070376421854$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 322 curves (of which all are hyperelliptic):
- $y^2=54 x^6+9 x^5+42 x^4+29 x^3+42 x^2+6 x+78$
- $y^2=12 x^6+39 x^5+27 x^4+49 x^3+74 x^2+31 x+26$
- $y^2=36 x^6+38 x^5+2 x^4+68 x^3+64 x^2+14 x+78$
- $y^2=56 x^6+43 x^5+31 x^4+16 x^3+75 x^2+51 x+60$
- $y^2=10 x^6+50 x^5+14 x^4+48 x^3+67 x^2+74 x+22$
- $y^2=11 x^6+61 x^5+51 x^4+24 x^3+18 x^2+43 x+65$
- $y^2=33 x^6+25 x^5+74 x^4+72 x^3+54 x^2+50 x+37$
- $y^2=56 x^6+23 x^5+26 x^4+7 x^3+34 x^2+77 x+29$
- $y^2=10 x^6+69 x^5+78 x^4+21 x^3+23 x^2+73 x+8$
- $y^2=43 x^6+75 x^5+50 x^4+58 x^3+20 x^2+55 x+48$
- $y^2=50 x^6+67 x^5+71 x^4+16 x^3+60 x^2+7 x+65$
- $y^2=49 x^6+38 x^5+19 x^4+17 x^3+47 x^2+51 x+50$
- $y^2=68 x^6+35 x^5+57 x^4+51 x^3+62 x^2+74 x+71$
- $y^2=45 x^6+64 x^5+33 x^4+55 x^3+58 x^2+18 x+7$
- $y^2=56 x^6+34 x^5+20 x^4+7 x^3+16 x^2+54 x+21$
- $y^2=62 x^6+14 x^5+23 x^4+23 x^3+47 x^2+39 x+12$
- $y^2=28 x^6+42 x^5+69 x^4+69 x^3+62 x^2+38 x+36$
- $y^2=42 x^6+2 x^5+63 x^4+33 x^3+75 x^2+17$
- $y^2=47 x^6+6 x^5+31 x^4+20 x^3+67 x^2+51$
- $y^2=72 x^6+62 x^4+33 x^3+46 x^2+35 x+21$
- and 302 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-71})\). |
| The base change of $A$ to $\F_{79^{2}}$ is 1.6241.ew 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-142}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.a_aew | $4$ | (not in LMFDB) |
| 2.79.ai_bg | $8$ | (not in LMFDB) |
| 2.79.i_bg | $8$ | (not in LMFDB) |