L(s) = 1 | + 6·11-s − 4·19-s − 25-s − 12·41-s + 20·43-s − 13·49-s − 24·59-s − 28·67-s − 14·73-s + 6·83-s − 36·89-s − 2·97-s − 18·107-s − 12·113-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 1.80·11-s − 0.917·19-s − 1/5·25-s − 1.87·41-s + 3.04·43-s − 1.85·49-s − 3.12·59-s − 3.42·67-s − 1.63·73-s + 0.658·83-s − 3.81·89-s − 0.203·97-s − 1.74·107-s − 1.12·113-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.104088285674841823256361524017, −7.46895104625204893367477999066, −7.29929175763847648434390847974, −6.47796475592373752838072674203, −6.43760550649778711412630154056, −5.89467970712550736408970851242, −5.43287815412844995352588032205, −4.47356450228848094997188248522, −4.43365380485938957073214377677, −3.92407328889816322387260499130, −3.12927788056823217499419163319, −2.78595567768432254175608596610, −1.56286118008502235583804201463, −1.52887349549650490954756981970, 0,
1.52887349549650490954756981970, 1.56286118008502235583804201463, 2.78595567768432254175608596610, 3.12927788056823217499419163319, 3.92407328889816322387260499130, 4.43365380485938957073214377677, 4.47356450228848094997188248522, 5.43287815412844995352588032205, 5.89467970712550736408970851242, 6.43760550649778711412630154056, 6.47796475592373752838072674203, 7.29929175763847648434390847974, 7.46895104625204893367477999066, 8.104088285674841823256361524017