| L(s) = 1 | + 2-s + 4-s − 4·7-s + 8-s − 9-s − 2·11-s − 4·14-s + 16-s − 18-s − 2·22-s + 4·23-s − 4·28-s − 4·29-s + 32-s − 36-s − 2·44-s + 4·46-s + 9·49-s − 4·53-s − 4·56-s − 4·58-s + 4·63-s + 64-s + 10·67-s + 12·71-s − 72-s + 8·77-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1/2·4-s − 1.51·7-s + 0.353·8-s − 1/3·9-s − 0.603·11-s − 1.06·14-s + 1/4·16-s − 0.235·18-s − 0.426·22-s + 0.834·23-s − 0.755·28-s − 0.742·29-s + 0.176·32-s − 1/6·36-s − 0.301·44-s + 0.589·46-s + 9/7·49-s − 0.549·53-s − 0.534·56-s − 0.525·58-s + 0.503·63-s + 1/8·64-s + 1.22·67-s + 1.42·71-s − 0.117·72-s + 0.911·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.38787261454606063824909390845, −7.05661726985314940289911207707, −6.63101012373000169922908793225, −6.27853015621919985423828416919, −5.80818454195660626627345044124, −5.45709493190369287892955487961, −4.95998277297101639819209746567, −4.54815075003214761659743628409, −3.75843548036157819163396675022, −3.55416903743644122901949430045, −3.03068371059766110177738897511, −2.54598630300543587905713765785, −2.03122839640133389310484445561, −0.980929890829968063665273880393, 0,
0.980929890829968063665273880393, 2.03122839640133389310484445561, 2.54598630300543587905713765785, 3.03068371059766110177738897511, 3.55416903743644122901949430045, 3.75843548036157819163396675022, 4.54815075003214761659743628409, 4.95998277297101639819209746567, 5.45709493190369287892955487961, 5.80818454195660626627345044124, 6.27853015621919985423828416919, 6.63101012373000169922908793225, 7.05661726985314940289911207707, 7.38787261454606063824909390845