| L(s) = 1 | − 2·5-s − 4·9-s − 2·13-s + 8·17-s − 25-s − 8·29-s + 6·37-s − 2·41-s + 8·45-s + 10·49-s + 14·53-s − 24·61-s + 4·65-s + 6·73-s + 7·81-s − 16·85-s + 12·89-s + 12·97-s + 8·101-s − 14·109-s − 12·113-s + 8·117-s + 10·121-s + 12·125-s + 127-s + 131-s + 137-s + ⋯ |
| L(s) = 1 | − 0.894·5-s − 4/3·9-s − 0.554·13-s + 1.94·17-s − 1/5·25-s − 1.48·29-s + 0.986·37-s − 0.312·41-s + 1.19·45-s + 10/7·49-s + 1.92·53-s − 3.07·61-s + 0.496·65-s + 0.702·73-s + 7/9·81-s − 1.73·85-s + 1.27·89-s + 1.21·97-s + 0.796·101-s − 1.34·109-s − 1.12·113-s + 0.739·117-s + 0.909·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.108471461957711940524755876100, −7.70849025586414781994228858349, −7.55832845306086563515684567516, −7.09541036819687202594285382903, −6.27793377533630052555580385370, −5.81022946833604319443960790425, −5.58253654987918468533561720633, −5.00681501106578448645058556654, −4.40827794638602250495511262690, −3.67471689592303987361200626806, −3.46466446117738800019021722984, −2.76996570675243436327098180739, −2.16973055198154386303552635037, −1.04651793970925095688712143243, 0,
1.04651793970925095688712143243, 2.16973055198154386303552635037, 2.76996570675243436327098180739, 3.46466446117738800019021722984, 3.67471689592303987361200626806, 4.40827794638602250495511262690, 5.00681501106578448645058556654, 5.58253654987918468533561720633, 5.81022946833604319443960790425, 6.27793377533630052555580385370, 7.09541036819687202594285382903, 7.55832845306086563515684567516, 7.70849025586414781994228858349, 8.108471461957711940524755876100