| L(s) = 1 | + 3-s + 9-s − 4·13-s − 8·19-s − 2·25-s + 27-s + 4·37-s − 4·39-s + 49-s − 8·57-s − 4·61-s − 12·73-s − 2·75-s − 16·79-s + 81-s + 20·97-s − 4·109-s + 4·111-s − 4·117-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 147-s + 149-s + 151-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1/3·9-s − 1.10·13-s − 1.83·19-s − 2/5·25-s + 0.192·27-s + 0.657·37-s − 0.640·39-s + 1/7·49-s − 1.05·57-s − 0.512·61-s − 1.40·73-s − 0.230·75-s − 1.80·79-s + 1/9·81-s + 2.03·97-s − 0.383·109-s + 0.379·111-s − 0.369·117-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0824·147-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.545196259939831190604891203096, −8.084817426260425380470468261288, −7.57828293431928156633454079856, −7.27712339215461453439044534379, −6.66076576256304296160190655054, −6.21666319901158747800445457771, −5.73813628904751972112835174526, −5.00868379143768967661814563221, −4.52361602173296863802803138278, −4.12019922721860777717659742162, −3.47555149106795526584770899468, −2.64215730531238732386170290577, −2.32677321564199613013048671795, −1.47571293091629992053184662728, 0,
1.47571293091629992053184662728, 2.32677321564199613013048671795, 2.64215730531238732386170290577, 3.47555149106795526584770899468, 4.12019922721860777717659742162, 4.52361602173296863802803138278, 5.00868379143768967661814563221, 5.73813628904751972112835174526, 6.21666319901158747800445457771, 6.66076576256304296160190655054, 7.27712339215461453439044534379, 7.57828293431928156633454079856, 8.084817426260425380470468261288, 8.545196259939831190604891203096