L(s) = 1 | − 3-s + 4-s − 2·9-s − 12-s + 16-s − 9·23-s − 10·25-s + 5·27-s + 2·31-s − 2·36-s + 5·37-s − 9·47-s − 48-s + 13·49-s − 3·53-s + 9·59-s + 64-s − 7·67-s + 9·69-s + 15·71-s + 10·75-s + 81-s − 9·92-s − 2·93-s + 10·97-s − 10·100-s + 7·103-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/2·4-s − 2/3·9-s − 0.288·12-s + 1/4·16-s − 1.87·23-s − 2·25-s + 0.962·27-s + 0.359·31-s − 1/3·36-s + 0.821·37-s − 1.31·47-s − 0.144·48-s + 13/7·49-s − 0.412·53-s + 1.17·59-s + 1/8·64-s − 0.855·67-s + 1.08·69-s + 1.78·71-s + 1.15·75-s + 1/9·81-s − 0.938·92-s − 0.207·93-s + 1.01·97-s − 100-s + 0.689·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.14625534855191965904252856545, −6.49465019242782090984922319554, −6.34456479306805090859466531980, −5.91823459529429089342384219791, −5.61833574147475309135447347180, −5.25395343888628502948518600511, −4.61077148196591260725709821754, −4.20844639577588816504211040783, −3.68660608995099879789749251284, −3.36261406321812250795690121311, −2.53043974442752146671270882425, −2.25443118451969417171892883918, −1.71168841250380650551263882796, −0.799135535478265123994517532385, 0,
0.799135535478265123994517532385, 1.71168841250380650551263882796, 2.25443118451969417171892883918, 2.53043974442752146671270882425, 3.36261406321812250795690121311, 3.68660608995099879789749251284, 4.20844639577588816504211040783, 4.61077148196591260725709821754, 5.25395343888628502948518600511, 5.61833574147475309135447347180, 5.91823459529429089342384219791, 6.34456479306805090859466531980, 6.49465019242782090984922319554, 7.14625534855191965904252856545