Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 41 x^{2} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.329091596338$, $\pm0.670908403662$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{5}, \sqrt{-127})\) |
Galois group: | $C_2^2$ |
Jacobians: | $135$ |
Isomorphism classes: | 150 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1891$ | $3575881$ | $6321204544$ | $11702002630761$ | $21611482492820011$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $1932$ | $79508$ | $3422836$ | $147008444$ | $6321046038$ | $271818611108$ | $11688205816228$ | $502592611936844$ | $21611482672355772$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 135 curves (of which all are hyperelliptic):
- $y^2=10 x^6+26 x^4+2 x^3+7 x^2+28 x+17$
- $y^2=30 x^6+35 x^4+6 x^3+21 x^2+41 x+8$
- $y^2=16 x^6+21 x^5+11 x^4+38 x^3+27 x^2+13 x+11$
- $y^2=5 x^6+20 x^5+33 x^4+28 x^3+38 x^2+39 x+33$
- $y^2=18 x^6+27 x^5+40 x^4+23 x^3+26 x^2+7 x+36$
- $y^2=26 x^6+11 x^5+30 x^4+7 x^3+38 x^2+23 x+17$
- $y^2=24 x^6+30 x^5+19 x^4+18 x^3+11 x^2+21 x+40$
- $y^2=29 x^6+4 x^5+14 x^4+11 x^3+33 x^2+20 x+34$
- $y^2=42 x^6+3 x^5+3 x^4+20 x^3+27 x^2+3 x+8$
- $y^2=40 x^6+9 x^5+9 x^4+17 x^3+38 x^2+9 x+24$
- $y^2=8 x^6+x^5+27 x^4+29 x^3+4 x^2+37 x+29$
- $y^2=24 x^6+3 x^5+38 x^4+x^3+12 x^2+25 x+1$
- $y^2=21 x^6+35 x^5+35 x^4+18 x^3+35 x^2+30 x+3$
- $y^2=20 x^6+19 x^5+19 x^4+11 x^3+19 x^2+4 x+9$
- $y^2=42 x^6+5 x^5+31 x^4+18 x^3+25 x^2+25 x+4$
- $y^2=40 x^6+15 x^5+7 x^4+11 x^3+32 x^2+32 x+12$
- $y^2=21 x^6+3 x^5+13 x^4+10 x^2+42 x+20$
- $y^2=20 x^6+9 x^5+39 x^4+30 x^2+40 x+17$
- $y^2=6 x^6+14 x^5+4 x^4+6 x^3+x^2+x+24$
- $y^2=18 x^6+42 x^5+12 x^4+18 x^3+3 x^2+3 x+29$
- and 115 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{5}, \sqrt{-127})\). |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.bp 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-635}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.a_abp | $4$ | (not in LMFDB) |