Dirichlet series
| L(s) = 1 | − 2-s + 4-s − 3·5-s − 4·7-s + 8-s − 2·9-s + 3·10-s + 2·11-s + 8·13-s + 4·14-s − 3·16-s − 4·17-s + 2·18-s − 3·20-s − 2·22-s − 7·23-s + 3·25-s − 8·26-s + 3·27-s − 4·28-s + 10·29-s − 31-s + 5·32-s + 4·34-s + 12·35-s − 2·36-s + 37-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1/2·4-s − 1.34·5-s − 1.51·7-s + 0.353·8-s − 2/3·9-s + 0.948·10-s + 0.603·11-s + 2.21·13-s + 1.06·14-s − 3/4·16-s − 0.970·17-s + 0.471·18-s − 0.670·20-s − 0.426·22-s − 1.45·23-s + 3/5·25-s − 1.56·26-s + 0.577·27-s − 0.755·28-s + 1.85·29-s − 0.179·31-s + 0.883·32-s + 0.685·34-s + 2.02·35-s − 1/3·36-s + 0.164·37-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Invariants
| Degree: | \(4\) |
| Conductor: | \(726\) = \(2 \cdot 3 \cdot 11^{2}\) |
| Sign: | $1$ |
| Analytic conductor: | \(0.0462903\) |
| Root analytic conductor: | \(0.463844\) |
| Motivic weight: | \(1\) |
| Rational: | yes |
| Arithmetic: | yes |
| Character: | Trivial |
| Primitive: | no |
| Self-dual: | yes |
| Analytic rank: | \(0\) |
| Selberg data: | \((4,\ 726,\ (\ :1/2, 1/2),\ 1)\) |
Particular Values
| \(L(1)\) | \(\approx\) | \(0.3024817222\) |
| \(L(\frac12)\) | \(\approx\) | \(0.3024817222\) |
| \(L(\frac{3}{2})\) | not available | |
| \(L(1)\) | not available |
Euler product
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
|---|---|---|---|---|
| bad | 2 | $C_1$$\times$$C_2$ | \( ( 1 - T )( 1 + p T + p T^{2} ) \) | |
| 3 | $C_1$$\times$$C_2$ | \( ( 1 - T )( 1 + T + p T^{2} ) \) | ||
| 11 | $C_1$ | \( ( 1 - T )^{2} \) | ||
| good | 5 | $C_2$$\times$$C_2$ | \( ( 1 - T + p T^{2} )( 1 + 4 T + p T^{2} ) \) | 2.5.d_g |
| 7 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) | 2.7.e_s | |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) | 2.13.ai_bq | |
| 17 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) | 2.17.e_bm | |
| 19 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) | 2.19.a_bm | |
| 23 | $C_2$$\times$$C_2$ | \( ( 1 + T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.23.h_ca | |
| 29 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + p T^{2} ) \) | 2.29.ak_cg | |
| 31 | $C_2$$\times$$C_2$ | \( ( 1 - 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) | 2.31.b_g | |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) | 2.37.ab_cq | |
| 41 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) | 2.41.g_co | |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.43.c_ck | |
| 47 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) | 2.47.ag_da | |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.53.c_de | |
| 59 | $C_2$$\times$$C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + p T^{2} ) \) | 2.59.af_eo | |
| 61 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) | 2.61.ae_ba | |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 + 7 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) | 2.67.t_ik | |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) | 2.71.b_fg | |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.73.c_es | |
| 79 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) | 2.79.a_cg | |
| 83 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.83.c_fm | |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 15 T + p T^{2} )( 1 - 10 T + p T^{2} ) \) | 2.89.az_mq | |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) | 2.97.j_ia | |
| show more | ||||
| show less | ||||
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.7801422519, −19.4348259844, −19.1857249719, −18.2200985458, −17.9414335735, −17.0336103204, −16.1831467776, −15.9261213942, −15.9140726033, −14.9306369221, −13.7992717180, −13.5686390571, −12.6398118567, −11.7777223349, −11.4512586103, −10.6319686571, −10.0355090972, −8.82266477585, −8.60353961929, −7.72339303053, −6.46917181705, −6.36261389471, −4.25842178548, −3.34833436263, 3.34833436263, 4.25842178548, 6.36261389471, 6.46917181705, 7.72339303053, 8.60353961929, 8.82266477585, 10.0355090972, 10.6319686571, 11.4512586103, 11.7777223349, 12.6398118567, 13.5686390571, 13.7992717180, 14.9306369221, 15.9140726033, 15.9261213942, 16.1831467776, 17.0336103204, 17.9414335735, 18.2200985458, 19.1857249719, 19.4348259844, 19.7801422519