Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 3 x + 37 x^{2} )( 1 + 2 x + 37 x^{2} )$ |
| $1 - x + 68 x^{2} - 37 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.420687118444$, $\pm0.552568456711$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $45$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1400$ | $2066400$ | $2570422400$ | $3505647600000$ | $4808338770935000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $37$ | $1505$ | $50746$ | $1870513$ | $69340417$ | $2565789590$ | $94931920141$ | $3512480065153$ | $129961744667122$ | $4808584250824025$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 45 curves (of which all are hyperelliptic):
- $y^2=x^6+28 x^5+7 x^4+3 x^3+11 x^2+21 x+9$
- $y^2=34 x^6+36 x^5+34 x^4+8 x^3+23 x^2+6 x+8$
- $y^2=21 x^6+35 x^5+25 x^4+11 x^3+26 x^2+5 x+30$
- $y^2=5 x^6+10 x^5+7 x^4+33 x^3+32 x^2+2 x+21$
- $y^2=27 x^6+11 x^5+36 x^4+6 x^3+31 x^2+25 x+31$
- $y^2=3 x^6+29 x^5+17 x^4+21 x^3+11 x^2+21 x+3$
- $y^2=5 x^6+x^5+24 x^4+3 x^3+20 x^2+30 x+11$
- $y^2=4 x^6+10 x^5+30 x^4+26 x^3+15 x^2+23 x+15$
- $y^2=34 x^6+21 x^5+14 x^4+29 x^3+5 x^2+10 x+7$
- $y^2=24 x^6+11 x^5+4 x^4+2 x^3+21 x^2+27 x+28$
- $y^2=21 x^6+x^5+2 x^4+36 x^3+3 x^2+31 x+35$
- $y^2=12 x^6+9 x^5+21 x^4+8 x^3+x^2+4 x+29$
- $y^2=5 x^6+18 x^5+30 x^4+20 x^3+17 x^2+8 x+32$
- $y^2=30 x^6+22 x^5+22 x^4+29 x^3+27 x^2+23 x+30$
- $y^2=19 x^6+14 x^5+28 x^4+3 x^3+35 x^2+25 x+24$
- $y^2=13 x^6+34 x^5+20 x^4+16 x^3+8 x^2+25 x+14$
- $y^2=22 x^6+30 x^5+4 x^4+27 x^3+9 x^2+19 x+32$
- $y^2=3 x^6+6 x^5+30 x^4+2 x^3+15 x^2+9 x+36$
- $y^2=21 x^6+10 x^5+13 x^4+36 x^2+16 x+16$
- $y^2=8 x^6+15 x^5+8 x^4+27 x^2+34 x+25$
- and 25 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ad $\times$ 1.37.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.