L(s) = 1 | − 11·11-s − 31-s − 11·41-s − 61-s − 31·71-s − 9·81-s + 101-s + 103-s + 107-s + 109-s + 113-s + 70·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
L(s) = 1 | − 3.31·11-s − 0.179·31-s − 1.71·41-s − 0.128·61-s − 3.67·71-s − 81-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 6.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.0550911686, −14.6460749471, −13.8986178895, −13.4929597632, −13.1806709956, −12.8391000730, −12.3763982805, −11.7109472704, −11.3035748003, −10.5823938099, −10.3657004063, −10.1177472465, −9.39742927222, −8.58742173695, −8.37205110350, −7.64986841047, −7.46763675687, −6.77258940349, −5.83874891319, −5.52578619650, −4.92795946160, −4.42123532946, −3.21951826798, −2.81908159172, −1.94559693000, 0,
1.94559693000, 2.81908159172, 3.21951826798, 4.42123532946, 4.92795946160, 5.52578619650, 5.83874891319, 6.77258940349, 7.46763675687, 7.64986841047, 8.37205110350, 8.58742173695, 9.39742927222, 10.1177472465, 10.3657004063, 10.5823938099, 11.3035748003, 11.7109472704, 12.3763982805, 12.8391000730, 13.1806709956, 13.4929597632, 13.8986178895, 14.6460749471, 15.0550911686