| L(s)  = 1  |   − 3·2-s   − 2·3-s   + 4·4-s     + 6·6-s     − 3·8-s   + 3·9-s       − 8·12-s   − 5·13-s       + 3·16-s   + 3·17-s   − 9·18-s   − 6·19-s         + 6·23-s   + 6·24-s   + 7·25-s   + 15·26-s   − 10·27-s     − 3·29-s       − 6·32-s     − 9·34-s     + 12·36-s   + 15·37-s   + 18·38-s   + 10·39-s     − 9·41-s     − 8·43-s       − 18·46-s  + ⋯ | 
 
| L(s)  = 1  |   − 2.12·2-s   − 1.15·3-s   + 2·4-s     + 2.44·6-s     − 1.06·8-s   + 9-s       − 2.30·12-s   − 1.38·13-s       + 3/4·16-s   + 0.727·17-s   − 2.12·18-s   − 1.37·19-s         + 1.25·23-s   + 1.22·24-s   + 7/5·25-s   + 2.94·26-s   − 1.92·27-s     − 0.557·29-s       − 1.06·32-s     − 1.54·34-s     + 2·36-s   + 2.46·37-s   + 2.91·38-s   + 1.60·39-s     − 1.40·41-s     − 1.21·43-s       − 2.65·46-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(0.09049039083\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.09049039083\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−20.10703301806788866096607442711, −19.33846444803067811938292685952, −18.76925999761091455577670097918, −18.56576970884593164181156978722, −17.65895984226676047880460224981, −17.20457702255851851831821238873, −16.64032221486140008944897783369, −16.58357118750575786137645040830, −14.95140792841582142043623560609, −14.90357896669741344337333157041, −13.06339550571964159220878092128, −12.51224222861724419404676510427, −11.45861743544082710207892638661, −10.84883986345867375872722724058, −9.917477007979000496132305323081, −9.565832078364084782726879302558, −8.455526054396895167012626272507, −7.54467569516254146308765020154, −6.57037775431560330867930744613, −5.06823463540602925038855173519, 
5.06823463540602925038855173519, 6.57037775431560330867930744613, 7.54467569516254146308765020154, 8.455526054396895167012626272507, 9.565832078364084782726879302558, 9.917477007979000496132305323081, 10.84883986345867375872722724058, 11.45861743544082710207892638661, 12.51224222861724419404676510427, 13.06339550571964159220878092128, 14.90357896669741344337333157041, 14.95140792841582142043623560609, 16.58357118750575786137645040830, 16.64032221486140008944897783369, 17.20457702255851851831821238873, 17.65895984226676047880460224981, 18.56576970884593164181156978722, 18.76925999761091455577670097918, 19.33846444803067811938292685952, 20.10703301806788866096607442711