L(s) = 1 | − 4·9-s − 4·17-s − 25-s − 12·49-s − 12·73-s + 7·81-s − 20·89-s − 28·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 16·153-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | − 4/3·9-s − 0.970·17-s − 1/5·25-s − 1.71·49-s − 1.40·73-s + 7/9·81-s − 2.11·89-s − 2.84·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.29·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.2244947249, −13.8835788771, −13.4256287250, −12.9397621340, −12.5581414954, −12.0061877425, −11.4727193146, −11.2521344165, −10.8877080002, −10.2120909889, −9.80530603877, −9.19181875628, −8.83705824525, −8.33387907023, −7.97955559825, −7.31878569452, −6.68249073725, −6.31643406985, −5.64491259488, −5.26218660734, −4.51024177862, −3.95375223140, −3.06247334895, −2.63154732816, −1.63490624320, 0,
1.63490624320, 2.63154732816, 3.06247334895, 3.95375223140, 4.51024177862, 5.26218660734, 5.64491259488, 6.31643406985, 6.68249073725, 7.31878569452, 7.97955559825, 8.33387907023, 8.83705824525, 9.19181875628, 9.80530603877, 10.2120909889, 10.8877080002, 11.2521344165, 11.4727193146, 12.0061877425, 12.5581414954, 12.9397621340, 13.4256287250, 13.8835788771, 14.2244947249