Properties

Label 2-312e2-1.1-c1-0-0
Degree $2$
Conductor $97344$
Sign $1$
Analytic cond. $777.295$
Root an. cond. $27.8800$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s + 4·11-s − 2·17-s − 8·19-s − 25-s + 6·29-s + 4·31-s + 8·35-s − 2·37-s − 10·41-s − 4·43-s + 8·47-s + 9·49-s − 10·53-s − 8·55-s − 4·59-s + 2·61-s − 16·67-s − 8·71-s − 2·73-s − 16·77-s + 8·79-s − 12·83-s + 4·85-s + 14·89-s + 16·95-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s + 1.20·11-s − 0.485·17-s − 1.83·19-s − 1/5·25-s + 1.11·29-s + 0.718·31-s + 1.35·35-s − 0.328·37-s − 1.56·41-s − 0.609·43-s + 1.16·47-s + 9/7·49-s − 1.37·53-s − 1.07·55-s − 0.520·59-s + 0.256·61-s − 1.95·67-s − 0.949·71-s − 0.234·73-s − 1.82·77-s + 0.900·79-s − 1.31·83-s + 0.433·85-s + 1.48·89-s + 1.64·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(777.295\)
Root analytic conductor: \(27.8800\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 97344,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1801824832\)
\(L(\frac12)\) \(\approx\) \(0.1801824832\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63729508908547, −13.36440537054196, −12.65901533212323, −12.32395443077363, −11.91659038240500, −11.44956947978151, −10.81950519070993, −10.18200372616393, −10.02110359879624, −9.175161209512654, −8.784631637318892, −8.476524240325583, −7.732616645660084, −7.102189623721945, −6.579798706213296, −6.329903948653145, −5.885866133102760, −4.699951360135816, −4.479925747343163, −3.774545152990904, −3.408003265780723, −2.773355988334470, −2.008828591072030, −1.176608224139180, −0.1414147712047156, 0.1414147712047156, 1.176608224139180, 2.008828591072030, 2.773355988334470, 3.408003265780723, 3.774545152990904, 4.479925747343163, 4.699951360135816, 5.885866133102760, 6.329903948653145, 6.579798706213296, 7.102189623721945, 7.732616645660084, 8.476524240325583, 8.784631637318892, 9.175161209512654, 10.02110359879624, 10.18200372616393, 10.81950519070993, 11.44956947978151, 11.91659038240500, 12.32395443077363, 12.65901533212323, 13.36440537054196, 13.63729508908547

Graph of the $Z$-function along the critical line