Properties

Label 2-312e2-1.1-c1-0-107
Degree $2$
Conductor $97344$
Sign $-1$
Analytic cond. $777.295$
Root an. cond. $27.8800$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 2·7-s + 2·11-s + 3·17-s + 6·19-s + 6·23-s + 4·25-s − 5·29-s + 6·35-s + 37-s + 5·41-s + 6·43-s − 6·47-s − 3·49-s + 3·53-s − 6·55-s + 12·59-s + 7·61-s − 10·67-s + 10·71-s − 11·73-s − 4·77-s − 8·79-s − 14·83-s − 9·85-s + 10·89-s − 18·95-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.755·7-s + 0.603·11-s + 0.727·17-s + 1.37·19-s + 1.25·23-s + 4/5·25-s − 0.928·29-s + 1.01·35-s + 0.164·37-s + 0.780·41-s + 0.914·43-s − 0.875·47-s − 3/7·49-s + 0.412·53-s − 0.809·55-s + 1.56·59-s + 0.896·61-s − 1.22·67-s + 1.18·71-s − 1.28·73-s − 0.455·77-s − 0.900·79-s − 1.53·83-s − 0.976·85-s + 1.05·89-s − 1.84·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(777.295\)
Root analytic conductor: \(27.8800\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 97344,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.22148691301728, −13.24222911152605, −13.16247567452778, −12.50658463655540, −11.96338901206078, −11.65664145438319, −11.19330453122905, −10.74669545401838, −9.848567519340320, −9.705690287622674, −9.001786614488206, −8.632291113343302, −7.798404227971153, −7.591187428096719, −6.997095924156273, −6.637786609687340, −5.738854109381335, −5.420170096987437, −4.642193147949619, −4.029793788966496, −3.561246919621724, −3.136603881573360, −2.534342506899437, −1.360474436874871, −0.8528527434379321, 0, 0.8528527434379321, 1.360474436874871, 2.534342506899437, 3.136603881573360, 3.561246919621724, 4.029793788966496, 4.642193147949619, 5.420170096987437, 5.738854109381335, 6.637786609687340, 6.997095924156273, 7.591187428096719, 7.798404227971153, 8.632291113343302, 9.001786614488206, 9.705690287622674, 9.848567519340320, 10.74669545401838, 11.19330453122905, 11.65664145438319, 11.96338901206078, 12.50658463655540, 13.16247567452778, 13.24222911152605, 14.22148691301728

Graph of the $Z$-function along the critical line