Properties

Label 2-312e2-1.1-c1-0-20
Degree $2$
Conductor $97344$
Sign $1$
Analytic cond. $777.295$
Root an. cond. $27.8800$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 4·7-s − 4·11-s − 8·23-s + 11·25-s − 8·29-s + 4·31-s − 16·35-s + 6·37-s + 12·41-s − 8·43-s + 4·47-s + 9·49-s + 16·55-s + 4·59-s + 2·61-s + 8·67-s + 4·71-s + 10·73-s − 16·77-s + 4·79-s + 12·83-s − 12·89-s − 14·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.78·5-s + 1.51·7-s − 1.20·11-s − 1.66·23-s + 11/5·25-s − 1.48·29-s + 0.718·31-s − 2.70·35-s + 0.986·37-s + 1.87·41-s − 1.21·43-s + 0.583·47-s + 9/7·49-s + 2.15·55-s + 0.520·59-s + 0.256·61-s + 0.977·67-s + 0.474·71-s + 1.17·73-s − 1.82·77-s + 0.450·79-s + 1.31·83-s − 1.27·89-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(777.295\)
Root analytic conductor: \(27.8800\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 97344,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.199528962\)
\(L(\frac12)\) \(\approx\) \(1.199528962\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83254277143808, −13.30599638150495, −12.57041591565092, −12.33798013994963, −11.69448597578969, −11.31905158714710, −11.01380628400506, −10.58074385202460, −9.862708462772563, −9.293455092617297, −8.400302760513337, −8.169315469693571, −7.879119903311633, −7.487583893919116, −6.941265614862486, −6.058773193570755, −5.454703457363775, −4.933961111888892, −4.398064048446399, −3.973176807716695, −3.461942454287084, −2.506070464316867, −2.125892233533521, −1.111570898352503, −0.3853883864814317, 0.3853883864814317, 1.111570898352503, 2.125892233533521, 2.506070464316867, 3.461942454287084, 3.973176807716695, 4.398064048446399, 4.933961111888892, 5.454703457363775, 6.058773193570755, 6.941265614862486, 7.487583893919116, 7.879119903311633, 8.169315469693571, 8.400302760513337, 9.293455092617297, 9.862708462772563, 10.58074385202460, 11.01380628400506, 11.31905158714710, 11.69448597578969, 12.33798013994963, 12.57041591565092, 13.30599638150495, 13.83254277143808

Graph of the $Z$-function along the critical line