Properties

Label 2-312e2-1.1-c1-0-96
Degree $2$
Conductor $97344$
Sign $1$
Analytic cond. $777.295$
Root an. cond. $27.8800$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·11-s + 6·17-s + 8·19-s + 8·23-s − 25-s + 2·29-s + 8·31-s − 10·37-s + 6·41-s − 4·43-s − 7·49-s − 14·53-s + 8·55-s − 12·59-s + 10·61-s + 8·67-s + 14·73-s + 4·79-s + 4·83-s + 12·85-s − 10·89-s + 16·95-s − 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.20·11-s + 1.45·17-s + 1.83·19-s + 1.66·23-s − 1/5·25-s + 0.371·29-s + 1.43·31-s − 1.64·37-s + 0.937·41-s − 0.609·43-s − 49-s − 1.92·53-s + 1.07·55-s − 1.56·59-s + 1.28·61-s + 0.977·67-s + 1.63·73-s + 0.450·79-s + 0.439·83-s + 1.30·85-s − 1.05·89-s + 1.64·95-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(777.295\)
Root analytic conductor: \(27.8800\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 97344,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.975550339\)
\(L(\frac12)\) \(\approx\) \(4.975550339\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.95059707129017, −13.47594597467985, −12.66298596239658, −12.39033570645509, −11.83740653519900, −11.35590542926163, −10.92266822761746, −10.05133232283806, −9.856709740993381, −9.377779221728424, −9.027516452772536, −8.221699715084305, −7.814129877456102, −7.138411393225591, −6.626771777923364, −6.227417086130188, −5.513075051577050, −5.116669349494611, −4.658925614986483, −3.646148264118841, −3.272722241312738, −2.782124793897823, −1.770566128490455, −1.258448593301944, −0.7981109612370910, 0.7981109612370910, 1.258448593301944, 1.770566128490455, 2.782124793897823, 3.272722241312738, 3.646148264118841, 4.658925614986483, 5.116669349494611, 5.513075051577050, 6.227417086130188, 6.626771777923364, 7.138411393225591, 7.814129877456102, 8.221699715084305, 9.027516452772536, 9.377779221728424, 9.856709740993381, 10.05133232283806, 10.92266822761746, 11.35590542926163, 11.83740653519900, 12.39033570645509, 12.66298596239658, 13.47594597467985, 13.95059707129017

Graph of the $Z$-function along the critical line