Properties

Label 2-312e2-1.1-c1-0-135
Degree $2$
Conductor $97344$
Sign $1$
Analytic cond. $777.295$
Root an. cond. $27.8800$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 3·7-s − 2·11-s − 6·17-s − 4·19-s + 8·23-s + 11·25-s − 4·29-s − 31-s + 12·35-s + 2·37-s + 12·41-s − 7·43-s − 6·47-s + 2·49-s + 4·53-s + 8·55-s + 61-s − 13·67-s − 12·71-s − 73-s + 6·77-s + 7·79-s − 14·83-s + 24·85-s − 10·89-s + 16·95-s + ⋯
L(s)  = 1  − 1.78·5-s − 1.13·7-s − 0.603·11-s − 1.45·17-s − 0.917·19-s + 1.66·23-s + 11/5·25-s − 0.742·29-s − 0.179·31-s + 2.02·35-s + 0.328·37-s + 1.87·41-s − 1.06·43-s − 0.875·47-s + 2/7·49-s + 0.549·53-s + 1.07·55-s + 0.128·61-s − 1.58·67-s − 1.42·71-s − 0.117·73-s + 0.683·77-s + 0.787·79-s − 1.53·83-s + 2.60·85-s − 1.05·89-s + 1.64·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(777.295\)
Root analytic conductor: \(27.8800\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 97344,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.57164346179956, −13.52171715709120, −13.04131824869659, −12.91075758378884, −12.46946113309918, −11.69256355733422, −11.34145436203697, −10.92056991678316, −10.51620593766031, −9.852050760768407, −9.010884813778013, −8.934738166069862, −8.311040049913843, −7.659007870637598, −7.260925643350733, −6.789008025757322, −6.329121421539966, −5.613916085815534, −4.787013883586565, −4.405157474555466, −3.935284577927105, −3.163057252802732, −2.926808290290031, −2.120562497737144, −1.005365377455377, 0, 0, 1.005365377455377, 2.120562497737144, 2.926808290290031, 3.163057252802732, 3.935284577927105, 4.405157474555466, 4.787013883586565, 5.613916085815534, 6.329121421539966, 6.789008025757322, 7.260925643350733, 7.659007870637598, 8.311040049913843, 8.934738166069862, 9.010884813778013, 9.852050760768407, 10.51620593766031, 10.92056991678316, 11.34145436203697, 11.69256355733422, 12.46946113309918, 12.91075758378884, 13.04131824869659, 13.52171715709120, 14.57164346179956

Graph of the $Z$-function along the critical line