Properties

Label 2-95760-1.1-c1-0-2
Degree $2$
Conductor $95760$
Sign $1$
Analytic cond. $764.647$
Root an. cond. $27.6522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 6·11-s + 2·13-s + 6·17-s − 19-s − 6·23-s + 25-s − 6·29-s − 8·31-s + 35-s + 2·37-s + 12·41-s − 8·43-s + 12·47-s + 49-s − 6·53-s + 6·55-s − 6·59-s − 4·61-s − 2·65-s + 10·67-s − 16·73-s + 6·77-s + 10·79-s + 12·83-s − 6·85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 1.80·11-s + 0.554·13-s + 1.45·17-s − 0.229·19-s − 1.25·23-s + 1/5·25-s − 1.11·29-s − 1.43·31-s + 0.169·35-s + 0.328·37-s + 1.87·41-s − 1.21·43-s + 1.75·47-s + 1/7·49-s − 0.824·53-s + 0.809·55-s − 0.781·59-s − 0.512·61-s − 0.248·65-s + 1.22·67-s − 1.87·73-s + 0.683·77-s + 1.12·79-s + 1.31·83-s − 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95760\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(764.647\)
Root analytic conductor: \(27.6522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 95760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6728759631\)
\(L(\frac12)\) \(\approx\) \(0.6728759631\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
19 \( 1 + T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.82713890247524, −13.17294211467441, −12.79644962240304, −12.47625545980489, −11.89317151728986, −11.29724308827789, −10.68955386347475, −10.52165144872556, −9.888128777388064, −9.328592822962284, −8.878109665645293, −8.018697421995004, −7.736418259905783, −7.575213172392887, −6.731732851310323, −5.932342055809812, −5.675279419584836, −5.186913453036975, −4.405330912462272, −3.756983655170824, −3.375043245913462, −2.645397566229408, −2.087226837940655, −1.212666168194736, −0.2682406501035470, 0.2682406501035470, 1.212666168194736, 2.087226837940655, 2.645397566229408, 3.375043245913462, 3.756983655170824, 4.405330912462272, 5.186913453036975, 5.675279419584836, 5.932342055809812, 6.731732851310323, 7.575213172392887, 7.736418259905783, 8.018697421995004, 8.878109665645293, 9.328592822962284, 9.888128777388064, 10.52165144872556, 10.68955386347475, 11.29724308827789, 11.89317151728986, 12.47625545980489, 12.79644962240304, 13.17294211467441, 13.82713890247524

Graph of the $Z$-function along the critical line