Properties

Label 2-95760-1.1-c1-0-131
Degree $2$
Conductor $95760$
Sign $-1$
Analytic cond. $764.647$
Root an. cond. $27.6522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s − 11-s + 13-s + 4·17-s + 19-s + 7·23-s + 25-s + 8·29-s − 9·31-s − 35-s + 12·37-s − 6·41-s − 5·43-s + 12·47-s + 49-s − 11·53-s + 55-s − 9·59-s + 5·61-s − 65-s + 71-s + 73-s − 77-s + 8·79-s − 15·83-s − 4·85-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s − 0.301·11-s + 0.277·13-s + 0.970·17-s + 0.229·19-s + 1.45·23-s + 1/5·25-s + 1.48·29-s − 1.61·31-s − 0.169·35-s + 1.97·37-s − 0.937·41-s − 0.762·43-s + 1.75·47-s + 1/7·49-s − 1.51·53-s + 0.134·55-s − 1.17·59-s + 0.640·61-s − 0.124·65-s + 0.118·71-s + 0.117·73-s − 0.113·77-s + 0.900·79-s − 1.64·83-s − 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95760\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(764.647\)
Root analytic conductor: \(27.6522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 95760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
19 \( 1 - T \)
good11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.15796449452401, −13.59842078682476, −12.91230915701697, −12.63977435524053, −12.13478050468138, −11.46268383583622, −11.17556803826575, −10.69504485212974, −10.11415046366560, −9.600682554982883, −9.021486621990550, −8.514322152500299, −8.043974696893221, −7.443737443534635, −7.188513904453350, −6.382943642811987, −5.914486358574740, −5.121028155433013, −4.931427316687540, −4.152657817003058, −3.561657739657646, −2.957804464461230, −2.472164287398032, −1.384381912977826, −1.035280872921251, 0, 1.035280872921251, 1.384381912977826, 2.472164287398032, 2.957804464461230, 3.561657739657646, 4.152657817003058, 4.931427316687540, 5.121028155433013, 5.914486358574740, 6.382943642811987, 7.188513904453350, 7.443737443534635, 8.043974696893221, 8.514322152500299, 9.021486621990550, 9.600682554982883, 10.11415046366560, 10.69504485212974, 11.17556803826575, 11.46268383583622, 12.13478050468138, 12.63977435524053, 12.91230915701697, 13.59842078682476, 14.15796449452401

Graph of the $Z$-function along the critical line