Properties

Label 2-9408-1.1-c1-0-70
Degree $2$
Conductor $9408$
Sign $1$
Analytic cond. $75.1232$
Root an. cond. $8.66736$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 9-s + 5·11-s + 15-s + 4·17-s − 8·19-s + 4·23-s − 4·25-s + 27-s + 5·29-s + 3·31-s + 5·33-s + 4·37-s + 2·43-s + 45-s − 6·47-s + 4·51-s + 9·53-s + 5·55-s − 8·57-s + 11·59-s − 6·61-s − 2·67-s + 4·69-s − 2·71-s − 10·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1/3·9-s + 1.50·11-s + 0.258·15-s + 0.970·17-s − 1.83·19-s + 0.834·23-s − 4/5·25-s + 0.192·27-s + 0.928·29-s + 0.538·31-s + 0.870·33-s + 0.657·37-s + 0.304·43-s + 0.149·45-s − 0.875·47-s + 0.560·51-s + 1.23·53-s + 0.674·55-s − 1.05·57-s + 1.43·59-s − 0.768·61-s − 0.244·67-s + 0.481·69-s − 0.237·71-s − 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9408\)    =    \(2^{6} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(75.1232\)
Root analytic conductor: \(8.66736\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.419875652\)
\(L(\frac12)\) \(\approx\) \(3.419875652\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73421539395236366430001804493, −6.96541645915432855218597929462, −6.34679548015235741300450429702, −5.86016148269565957058685991509, −4.76714180035995561453715019228, −4.15734441221853704248790189745, −3.46995114737342128672316311526, −2.57126246579998573602374877697, −1.76638690175158197459294636409, −0.907169062729814406464088705719, 0.907169062729814406464088705719, 1.76638690175158197459294636409, 2.57126246579998573602374877697, 3.46995114737342128672316311526, 4.15734441221853704248790189745, 4.76714180035995561453715019228, 5.86016148269565957058685991509, 6.34679548015235741300450429702, 6.96541645915432855218597929462, 7.73421539395236366430001804493

Graph of the $Z$-function along the critical line