Properties

Label 2-93786-1.1-c1-0-49
Degree $2$
Conductor $93786$
Sign $-1$
Analytic cond. $748.884$
Root an. cond. $27.3657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2·5-s + 6-s − 8-s + 9-s − 2·10-s + 11-s − 12-s − 2·13-s − 2·15-s + 16-s + 2·17-s − 18-s + 4·19-s + 2·20-s − 22-s − 8·23-s + 24-s − 25-s + 2·26-s − 27-s − 29-s + 2·30-s − 4·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.301·11-s − 0.288·12-s − 0.554·13-s − 0.516·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.917·19-s + 0.447·20-s − 0.213·22-s − 1.66·23-s + 0.204·24-s − 1/5·25-s + 0.392·26-s − 0.192·27-s − 0.185·29-s + 0.365·30-s − 0.718·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 93786 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93786 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(93786\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 11 \cdot 29\)
Sign: $-1$
Analytic conductor: \(748.884\)
Root analytic conductor: \(27.3657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 93786,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 - T \)
29 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.13724049886665, −13.48117142902034, −13.18519880278815, −12.34546218773812, −11.99003130384085, −11.74482608083537, −10.99563751773213, −10.48247884686583, −10.04910235951542, −9.690655711670095, −9.217411924651941, −8.748395478248281, −7.913299928553198, −7.485286375287344, −7.165859969028995, −6.292243217766886, −5.871791960441413, −5.663867227453099, −4.887347029063521, −4.207428814390408, −3.556052192550672, −2.775928439121731, −2.083914751077740, −1.607503644117453, −0.8550278353282138, 0, 0.8550278353282138, 1.607503644117453, 2.083914751077740, 2.775928439121731, 3.556052192550672, 4.207428814390408, 4.887347029063521, 5.663867227453099, 5.871791960441413, 6.292243217766886, 7.165859969028995, 7.485286375287344, 7.913299928553198, 8.748395478248281, 9.217411924651941, 9.690655711670095, 10.04910235951542, 10.48247884686583, 10.99563751773213, 11.74482608083537, 11.99003130384085, 12.34546218773812, 13.18519880278815, 13.48117142902034, 14.13724049886665

Graph of the $Z$-function along the critical line