Properties

Label 2-9360-1.1-c1-0-60
Degree $2$
Conductor $9360$
Sign $1$
Analytic cond. $74.7399$
Root an. cond. $8.64522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s + 4·11-s + 13-s + 6·17-s − 8·23-s + 25-s − 6·29-s + 4·31-s + 4·35-s − 2·37-s + 10·41-s + 4·43-s − 8·47-s + 9·49-s + 2·53-s + 4·55-s + 12·59-s − 2·61-s + 65-s + 16·67-s − 8·71-s − 6·73-s + 16·77-s + 16·79-s + 4·83-s + 6·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s + 1.20·11-s + 0.277·13-s + 1.45·17-s − 1.66·23-s + 1/5·25-s − 1.11·29-s + 0.718·31-s + 0.676·35-s − 0.328·37-s + 1.56·41-s + 0.609·43-s − 1.16·47-s + 9/7·49-s + 0.274·53-s + 0.539·55-s + 1.56·59-s − 0.256·61-s + 0.124·65-s + 1.95·67-s − 0.949·71-s − 0.702·73-s + 1.82·77-s + 1.80·79-s + 0.439·83-s + 0.650·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9360\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(74.7399\)
Root analytic conductor: \(8.64522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.457450983\)
\(L(\frac12)\) \(\approx\) \(3.457450983\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.968682759424561933831757091255, −7.07262364728116113208537629201, −6.21672147498484835051363161803, −5.65968463169530375708945420358, −5.03104716929566360549516787498, −4.10925011496621641941230567060, −3.67896218613553789648435530758, −2.40292444726231390025877377076, −1.64504520317014171091379354867, −0.992568785942682534383301571568, 0.992568785942682534383301571568, 1.64504520317014171091379354867, 2.40292444726231390025877377076, 3.67896218613553789648435530758, 4.10925011496621641941230567060, 5.03104716929566360549516787498, 5.65968463169530375708945420358, 6.21672147498484835051363161803, 7.07262364728116113208537629201, 7.968682759424561933831757091255

Graph of the $Z$-function along the critical line