Properties

Label 9360.cb
Number of curves $4$
Conductor $9360$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 9360.cb have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9360.cb do not have complex multiplication.

Modular form 9360.2.a.cb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 4 q^{7} + 4 q^{11} + q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 9360.cb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9360.cb1 9360v3 \([0, 0, 0, -14907, -697894]\) \(490757540836/2142075\) \(1599050419200\) \([2]\) \(24576\) \(1.1946\)  
9360.cb2 9360v2 \([0, 0, 0, -1407, 1406]\) \(1650587344/950625\) \(177409440000\) \([2, 2]\) \(12288\) \(0.84805\)  
9360.cb3 9360v1 \([0, 0, 0, -1002, 12179]\) \(9538484224/26325\) \(307054800\) \([2]\) \(6144\) \(0.50148\) \(\Gamma_0(N)\)-optimal
9360.cb4 9360v4 \([0, 0, 0, 5613, 11234]\) \(26198797244/15234375\) \(-11372400000000\) \([4]\) \(24576\) \(1.1946\)