Properties

Label 2-91728-1.1-c1-0-151
Degree $2$
Conductor $91728$
Sign $-1$
Analytic cond. $732.451$
Root an. cond. $27.0638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·11-s + 13-s − 6·17-s + 8·23-s − 25-s + 10·29-s − 8·31-s + 6·37-s − 6·41-s − 4·43-s + 8·47-s − 6·53-s + 8·55-s − 8·59-s − 10·61-s + 2·65-s − 4·67-s − 8·71-s − 2·73-s − 8·79-s − 12·85-s + 18·89-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.20·11-s + 0.277·13-s − 1.45·17-s + 1.66·23-s − 1/5·25-s + 1.85·29-s − 1.43·31-s + 0.986·37-s − 0.937·41-s − 0.609·43-s + 1.16·47-s − 0.824·53-s + 1.07·55-s − 1.04·59-s − 1.28·61-s + 0.248·65-s − 0.488·67-s − 0.949·71-s − 0.234·73-s − 0.900·79-s − 1.30·85-s + 1.90·89-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91728\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(732.451\)
Root analytic conductor: \(27.0638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 91728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.98741792795436, −13.61327244201949, −13.17963442506065, −12.75790421968633, −12.07472850506848, −11.63355173950998, −11.11709670620690, −10.59263957106223, −10.24066702817719, −9.374187292986391, −9.113980958951052, −8.881343585619591, −8.156608986183838, −7.414093605988840, −6.844168822352281, −6.438481136285696, −6.063162656147895, −5.378756500233997, −4.643335302678469, −4.393993539743055, −3.526453697726948, −2.942964096170502, −2.286358125449646, −1.550004641744986, −1.122576431548871, 0, 1.122576431548871, 1.550004641744986, 2.286358125449646, 2.942964096170502, 3.526453697726948, 4.393993539743055, 4.643335302678469, 5.378756500233997, 6.063162656147895, 6.438481136285696, 6.844168822352281, 7.414093605988840, 8.156608986183838, 8.881343585619591, 9.113980958951052, 9.374187292986391, 10.24066702817719, 10.59263957106223, 11.11709670620690, 11.63355173950998, 12.07472850506848, 12.75790421968633, 13.17963442506065, 13.61327244201949, 13.98741792795436

Graph of the $Z$-function along the critical line