Properties

Label 2-91728-1.1-c1-0-71
Degree $2$
Conductor $91728$
Sign $1$
Analytic cond. $732.451$
Root an. cond. $27.0638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·11-s − 13-s + 2·17-s − 25-s + 10·29-s + 4·31-s − 2·37-s + 6·41-s + 12·43-s − 6·53-s + 8·55-s − 12·59-s + 2·61-s − 2·65-s + 8·67-s − 2·73-s − 8·79-s − 4·83-s + 4·85-s − 2·89-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.20·11-s − 0.277·13-s + 0.485·17-s − 1/5·25-s + 1.85·29-s + 0.718·31-s − 0.328·37-s + 0.937·41-s + 1.82·43-s − 0.824·53-s + 1.07·55-s − 1.56·59-s + 0.256·61-s − 0.248·65-s + 0.977·67-s − 0.234·73-s − 0.900·79-s − 0.439·83-s + 0.433·85-s − 0.211·89-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91728\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(732.451\)
Root analytic conductor: \(27.0638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.991796379\)
\(L(\frac12)\) \(\approx\) \(3.991796379\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.88310958211594, −13.58347660970836, −12.69474892774289, −12.43076509511829, −11.97965756824696, −11.40287719167841, −10.84313378485852, −10.32635825278756, −9.741739138851306, −9.499571013753101, −8.943934408737983, −8.379120947390383, −7.825427192706436, −7.199451374475913, −6.595976193093704, −6.201741202556586, −5.738355394531530, −5.119679693609449, −4.343198842924883, −4.117108076146181, −3.091164119393045, −2.726538970046844, −1.912479404400066, −1.295949686654049, −0.6791748441924608, 0.6791748441924608, 1.295949686654049, 1.912479404400066, 2.726538970046844, 3.091164119393045, 4.117108076146181, 4.343198842924883, 5.119679693609449, 5.738355394531530, 6.201741202556586, 6.595976193093704, 7.199451374475913, 7.825427192706436, 8.379120947390383, 8.943934408737983, 9.499571013753101, 9.741739138851306, 10.32635825278756, 10.84313378485852, 11.40287719167841, 11.97965756824696, 12.43076509511829, 12.69474892774289, 13.58347660970836, 13.88310958211594

Graph of the $Z$-function along the critical line