Properties

Label 2-91728-1.1-c1-0-6
Degree $2$
Conductor $91728$
Sign $1$
Analytic cond. $732.451$
Root an. cond. $27.0638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·11-s + 13-s − 3·17-s − 5·19-s − 5·25-s + 9·29-s − 8·31-s + 2·37-s + 6·41-s − 8·43-s − 9·47-s + 3·53-s + 9·59-s − 7·61-s − 5·67-s + 3·71-s + 2·73-s + 10·79-s − 12·83-s − 6·89-s − 16·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.904·11-s + 0.277·13-s − 0.727·17-s − 1.14·19-s − 25-s + 1.67·29-s − 1.43·31-s + 0.328·37-s + 0.937·41-s − 1.21·43-s − 1.31·47-s + 0.412·53-s + 1.17·59-s − 0.896·61-s − 0.610·67-s + 0.356·71-s + 0.234·73-s + 1.12·79-s − 1.31·83-s − 0.635·89-s − 1.62·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91728\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(732.451\)
Root analytic conductor: \(27.0638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7716300416\)
\(L(\frac12)\) \(\approx\) \(0.7716300416\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76426331128524, −13.30123759772299, −12.92066108608494, −12.48489302636371, −11.87578745273371, −11.26805075160508, −10.94047991507828, −10.38559340000755, −9.952596042216162, −9.392029953481479, −8.748372167733615, −8.277208530984160, −7.982055782254096, −7.179352112716421, −6.780236948565037, −6.112660545081308, −5.739978500222985, −4.950685874743422, −4.563181034726870, −3.909495765447309, −3.304907402142994, −2.527658990559923, −2.105947727113746, −1.329538049410281, −0.2743383268750708, 0.2743383268750708, 1.329538049410281, 2.105947727113746, 2.527658990559923, 3.304907402142994, 3.909495765447309, 4.563181034726870, 4.950685874743422, 5.739978500222985, 6.112660545081308, 6.780236948565037, 7.179352112716421, 7.982055782254096, 8.277208530984160, 8.748372167733615, 9.392029953481479, 9.952596042216162, 10.38559340000755, 10.94047991507828, 11.26805075160508, 11.87578745273371, 12.48489302636371, 12.92066108608494, 13.30123759772299, 13.76426331128524

Graph of the $Z$-function along the critical line