| L(s)  = 1 | − 2·7-s     − 3·9-s     − 4·11-s     − 4·13-s         − 6·17-s     − 4·19-s         − 2·23-s             + 2·29-s     − 4·31-s             + 2·37-s         − 2·41-s     − 4·43-s         + 2·47-s     − 3·49-s         + 6·53-s                 + 2·61-s     + 6·63-s         + 2·67-s         + 8·71-s     − 4·73-s         + 8·77-s     + 4·79-s     + 9·81-s     + 8·83-s             − 2·89-s     + 8·91-s             + 6·97-s  + ⋯ | 
| L(s)  = 1 | − 0.755·7-s     − 9-s     − 1.20·11-s     − 1.10·13-s         − 1.45·17-s     − 0.917·19-s         − 0.417·23-s             + 0.371·29-s     − 0.718·31-s             + 0.328·37-s         − 0.312·41-s     − 0.609·43-s         + 0.291·47-s     − 3/7·49-s         + 0.824·53-s                 + 0.256·61-s     + 0.755·63-s         + 0.244·67-s         + 0.949·71-s     − 0.468·73-s         + 0.911·77-s     + 0.450·79-s     + 81-s     + 0.878·83-s             − 0.211·89-s     + 0.838·91-s             + 0.609·97-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 91600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 229 | \( 1 + T \) |  | 
| good | 3 | \( 1 + p T^{2} \) | 1.3.a | 
|  | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c | 
|  | 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e | 
|  | 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e | 
|  | 17 | \( 1 + 6 T + p T^{2} \) | 1.17.g | 
|  | 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e | 
|  | 23 | \( 1 + 2 T + p T^{2} \) | 1.23.c | 
|  | 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac | 
|  | 31 | \( 1 + 4 T + p T^{2} \) | 1.31.e | 
|  | 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac | 
|  | 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 - 2 T + p T^{2} \) | 1.47.ac | 
|  | 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag | 
|  | 59 | \( 1 + p T^{2} \) | 1.59.a | 
|  | 61 | \( 1 - 2 T + p T^{2} \) | 1.61.ac | 
|  | 67 | \( 1 - 2 T + p T^{2} \) | 1.67.ac | 
|  | 71 | \( 1 - 8 T + p T^{2} \) | 1.71.ai | 
|  | 73 | \( 1 + 4 T + p T^{2} \) | 1.73.e | 
|  | 79 | \( 1 - 4 T + p T^{2} \) | 1.79.ae | 
|  | 83 | \( 1 - 8 T + p T^{2} \) | 1.83.ai | 
|  | 89 | \( 1 + 2 T + p T^{2} \) | 1.89.c | 
|  | 97 | \( 1 - 6 T + p T^{2} \) | 1.97.ag | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.08895591965599, −13.47688951848393, −13.08639656973153, −12.76808254887686, −12.10924428110392, −11.70530231546413, −11.05140551052225, −10.59033393244253, −10.27543728642449, −9.476548637674782, −9.255741834206200, −8.455723450597937, −8.206952797133837, −7.568295641839055, −6.845956057715518, −6.571109194241047, −5.877958685777910, −5.349237258124301, −4.836163301278906, −4.246846951557427, −3.513413979959148, −2.833092099941456, −2.375605577947474, −1.960413722979220, −0.4913078233249665, 0, 
0.4913078233249665, 1.960413722979220, 2.375605577947474, 2.833092099941456, 3.513413979959148, 4.246846951557427, 4.836163301278906, 5.349237258124301, 5.877958685777910, 6.571109194241047, 6.845956057715518, 7.568295641839055, 8.206952797133837, 8.455723450597937, 9.255741834206200, 9.476548637674782, 10.27543728642449, 10.59033393244253, 11.05140551052225, 11.70530231546413, 12.10924428110392, 12.76808254887686, 13.08639656973153, 13.47688951848393, 14.08895591965599
