Properties

Label 2-30e2-1.1-c1-0-1
Degree $2$
Conductor $900$
Sign $1$
Analytic cond. $7.18653$
Root an. cond. $2.68077$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 6·11-s + 5·13-s + 6·17-s + 5·19-s + 6·23-s + 6·29-s − 31-s + 2·37-s − 43-s − 6·47-s − 6·49-s + 12·53-s + 6·59-s − 13·61-s + 11·67-s + 2·73-s + 6·77-s + 8·79-s + 6·83-s − 5·91-s − 7·97-s + 12·101-s − 4·103-s − 12·107-s − 7·109-s − 12·113-s + ⋯
L(s)  = 1  − 0.377·7-s − 1.80·11-s + 1.38·13-s + 1.45·17-s + 1.14·19-s + 1.25·23-s + 1.11·29-s − 0.179·31-s + 0.328·37-s − 0.152·43-s − 0.875·47-s − 6/7·49-s + 1.64·53-s + 0.781·59-s − 1.66·61-s + 1.34·67-s + 0.234·73-s + 0.683·77-s + 0.900·79-s + 0.658·83-s − 0.524·91-s − 0.710·97-s + 1.19·101-s − 0.394·103-s − 1.16·107-s − 0.670·109-s − 1.12·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(7.18653\)
Root analytic conductor: \(2.68077\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.532714580\)
\(L(\frac12)\) \(\approx\) \(1.532714580\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19494219048266918540495603294, −9.350774149991784768341322845696, −8.275919068288280643535776826565, −7.72957625844481983843839527768, −6.68901441807918237505792173786, −5.61334343701912201622834145502, −5.03310337383134036338192767807, −3.50841194957311191464253456169, −2.81121112269996318424524765777, −1.03773521644426615440225296994, 1.03773521644426615440225296994, 2.81121112269996318424524765777, 3.50841194957311191464253456169, 5.03310337383134036338192767807, 5.61334343701912201622834145502, 6.68901441807918237505792173786, 7.72957625844481983843839527768, 8.275919068288280643535776826565, 9.350774149991784768341322845696, 10.19494219048266918540495603294

Graph of the $Z$-function along the critical line