Properties

Label 2-88725-1.1-c1-0-60
Degree $2$
Conductor $88725$
Sign $1$
Analytic cond. $708.472$
Root an. cond. $26.6171$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s + 2·6-s − 7-s + 9-s − 3·11-s − 2·12-s + 2·14-s − 4·16-s + 3·17-s − 2·18-s − 2·19-s + 21-s + 6·22-s − 27-s − 2·28-s − 3·29-s − 4·31-s + 8·32-s + 3·33-s − 6·34-s + 2·36-s + 4·37-s + 4·38-s − 4·41-s − 2·42-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s + 0.816·6-s − 0.377·7-s + 1/3·9-s − 0.904·11-s − 0.577·12-s + 0.534·14-s − 16-s + 0.727·17-s − 0.471·18-s − 0.458·19-s + 0.218·21-s + 1.27·22-s − 0.192·27-s − 0.377·28-s − 0.557·29-s − 0.718·31-s + 1.41·32-s + 0.522·33-s − 1.02·34-s + 1/3·36-s + 0.657·37-s + 0.648·38-s − 0.624·41-s − 0.308·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 88725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(88725\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(708.472\)
Root analytic conductor: \(26.6171\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 88725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.44929680815614, −13.85058567830965, −13.14668233000718, −12.90618899597344, −12.40540292979280, −11.63118251997330, −11.24073850152208, −10.85299334408262, −10.23048849756098, −9.927924249681665, −9.511981424030963, −8.936423422467868, −8.278607144594006, −7.913184340273138, −7.486617061967339, −6.753012459401623, −6.509514993733240, −5.635031887581048, −5.253020344191298, −4.580896852489140, −3.888860285388413, −3.131858400593451, −2.455632969974905, −1.688474563514403, −1.148559104992144, 0, 0, 1.148559104992144, 1.688474563514403, 2.455632969974905, 3.131858400593451, 3.888860285388413, 4.580896852489140, 5.253020344191298, 5.635031887581048, 6.509514993733240, 6.753012459401623, 7.486617061967339, 7.913184340273138, 8.278607144594006, 8.936423422467868, 9.511981424030963, 9.927924249681665, 10.23048849756098, 10.85299334408262, 11.24073850152208, 11.63118251997330, 12.40540292979280, 12.90618899597344, 13.14668233000718, 13.85058567830965, 14.44929680815614

Graph of the $Z$-function along the critical line