Properties

Label 2-87362-1.1-c1-0-33
Degree $2$
Conductor $87362$
Sign $-1$
Analytic cond. $697.589$
Root an. cond. $26.4119$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s + 7-s − 8-s − 2·9-s − 12-s + 5·13-s − 14-s + 16-s − 3·17-s + 2·18-s − 21-s + 3·23-s + 24-s − 5·25-s − 5·26-s + 5·27-s + 28-s + 9·29-s + 4·31-s − 32-s + 3·34-s − 2·36-s − 2·37-s − 5·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s − 0.288·12-s + 1.38·13-s − 0.267·14-s + 1/4·16-s − 0.727·17-s + 0.471·18-s − 0.218·21-s + 0.625·23-s + 0.204·24-s − 25-s − 0.980·26-s + 0.962·27-s + 0.188·28-s + 1.67·29-s + 0.718·31-s − 0.176·32-s + 0.514·34-s − 1/3·36-s − 0.328·37-s − 0.800·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 87362 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87362 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(87362\)    =    \(2 \cdot 11^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(697.589\)
Root analytic conductor: \(26.4119\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 87362,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
11 \( 1 \)
19 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02821811599199, −13.68193162493344, −13.23823873189857, −12.50546101228214, −11.93659214803958, −11.56436777054945, −11.18926970261941, −10.69452787954675, −10.30565059483203, −9.683595389693945, −9.005317940707388, −8.603938460289539, −8.186164189946683, −7.806242017998415, −6.768552899533336, −6.585148978114744, −6.094879536571834, −5.436227809919966, −4.912642241782150, −4.274636888869064, −3.496382189411865, −2.929536986401793, −2.219366648431818, −1.432082253544456, −0.8465226721890109, 0, 0.8465226721890109, 1.432082253544456, 2.219366648431818, 2.929536986401793, 3.496382189411865, 4.274636888869064, 4.912642241782150, 5.436227809919966, 6.094879536571834, 6.585148978114744, 6.768552899533336, 7.806242017998415, 8.186164189946683, 8.603938460289539, 9.005317940707388, 9.683595389693945, 10.30565059483203, 10.69452787954675, 11.18926970261941, 11.56436777054945, 11.93659214803958, 12.50546101228214, 13.23823873189857, 13.68193162493344, 14.02821811599199

Graph of the $Z$-function along the critical line