Properties

Label 2-87120-1.1-c1-0-48
Degree $2$
Conductor $87120$
Sign $1$
Analytic cond. $695.656$
Root an. cond. $26.3753$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3·7-s + 6·13-s − 7·17-s + 5·19-s − 6·23-s + 25-s + 5·29-s + 3·31-s − 3·35-s + 3·37-s + 2·41-s + 4·43-s − 2·47-s + 2·49-s + 53-s − 10·59-s − 7·61-s − 6·65-s − 8·67-s + 7·71-s − 14·73-s + 10·79-s + 6·83-s + 7·85-s + 15·89-s + 18·91-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.13·7-s + 1.66·13-s − 1.69·17-s + 1.14·19-s − 1.25·23-s + 1/5·25-s + 0.928·29-s + 0.538·31-s − 0.507·35-s + 0.493·37-s + 0.312·41-s + 0.609·43-s − 0.291·47-s + 2/7·49-s + 0.137·53-s − 1.30·59-s − 0.896·61-s − 0.744·65-s − 0.977·67-s + 0.830·71-s − 1.63·73-s + 1.12·79-s + 0.658·83-s + 0.759·85-s + 1.58·89-s + 1.88·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 87120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(87120\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(695.656\)
Root analytic conductor: \(26.3753\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 87120,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.819258621\)
\(L(\frac12)\) \(\approx\) \(2.819258621\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.87577429986575, −13.55754268576517, −13.03539148727083, −12.24467001901636, −11.87194598244317, −11.39197605407133, −10.97428099057313, −10.65461356121615, −9.988740476884894, −9.206936527915261, −8.849142467165065, −8.329061870494636, −7.855813129662641, −7.520430335589646, −6.634456837797447, −6.239842222820643, −5.746432760836162, −4.902139041484009, −4.487085576471120, −4.052454421801746, −3.351676537295797, −2.672436520528560, −1.871400863847277, −1.323615551704343, −0.5685469079744815, 0.5685469079744815, 1.323615551704343, 1.871400863847277, 2.672436520528560, 3.351676537295797, 4.052454421801746, 4.487085576471120, 4.902139041484009, 5.746432760836162, 6.239842222820643, 6.634456837797447, 7.520430335589646, 7.855813129662641, 8.329061870494636, 8.849142467165065, 9.206936527915261, 9.988740476884894, 10.65461356121615, 10.97428099057313, 11.39197605407133, 11.87194598244317, 12.24467001901636, 13.03539148727083, 13.55754268576517, 13.87577429986575

Graph of the $Z$-function along the critical line