Properties

Label 2-87024-1.1-c1-0-0
Degree $2$
Conductor $87024$
Sign $1$
Analytic cond. $694.890$
Root an. cond. $26.3607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·5-s + 9-s − 5·11-s − 3·13-s − 4·15-s − 3·17-s − 7·19-s − 9·23-s + 11·25-s − 27-s − 2·31-s + 5·33-s + 37-s + 3·39-s − 6·41-s − 4·43-s + 4·45-s − 10·47-s + 3·51-s + 3·53-s − 20·55-s + 7·57-s − 4·59-s + 2·61-s − 12·65-s − 6·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.78·5-s + 1/3·9-s − 1.50·11-s − 0.832·13-s − 1.03·15-s − 0.727·17-s − 1.60·19-s − 1.87·23-s + 11/5·25-s − 0.192·27-s − 0.359·31-s + 0.870·33-s + 0.164·37-s + 0.480·39-s − 0.937·41-s − 0.609·43-s + 0.596·45-s − 1.45·47-s + 0.420·51-s + 0.412·53-s − 2.69·55-s + 0.927·57-s − 0.520·59-s + 0.256·61-s − 1.48·65-s − 0.733·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 87024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(87024\)    =    \(2^{4} \cdot 3 \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(694.890\)
Root analytic conductor: \(26.3607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 87024,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2573045298\)
\(L(\frac12)\) \(\approx\) \(0.2573045298\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
37 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.77202352441677, −13.33623765162295, −12.99722065240773, −12.55733717533788, −12.05578258889376, −11.33323811500258, −10.69629616223696, −10.40638270480873, −10.01311880351500, −9.617217935567348, −9.004919366603936, −8.247636800220232, −8.014005202705644, −7.076560734488422, −6.600711936314394, −6.196917445681685, −5.607450245716679, −5.238678130891250, −4.682293300193045, −4.141274538286134, −3.094742845613022, −2.364277573203054, −2.086493741805301, −1.531944276014030, −0.1516330129262388, 0.1516330129262388, 1.531944276014030, 2.086493741805301, 2.364277573203054, 3.094742845613022, 4.141274538286134, 4.682293300193045, 5.238678130891250, 5.607450245716679, 6.196917445681685, 6.600711936314394, 7.076560734488422, 8.014005202705644, 8.247636800220232, 9.004919366603936, 9.617217935567348, 10.01311880351500, 10.40638270480873, 10.69629616223696, 11.33323811500258, 12.05578258889376, 12.55733717533788, 12.99722065240773, 13.33623765162295, 13.77202352441677

Graph of the $Z$-function along the critical line