Properties

Label 2-86700-1.1-c1-0-34
Degree $2$
Conductor $86700$
Sign $-1$
Analytic cond. $692.302$
Root an. cond. $26.3116$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5·7-s + 9-s + 5·11-s + 19-s − 5·21-s − 8·23-s + 27-s + 3·29-s + 8·31-s + 5·33-s − 3·37-s − 5·41-s + 4·43-s − 47-s + 18·49-s + 53-s + 57-s + 6·59-s + 4·61-s − 5·63-s − 2·67-s − 8·69-s − 8·71-s − 17·73-s − 25·77-s − 10·79-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.88·7-s + 1/3·9-s + 1.50·11-s + 0.229·19-s − 1.09·21-s − 1.66·23-s + 0.192·27-s + 0.557·29-s + 1.43·31-s + 0.870·33-s − 0.493·37-s − 0.780·41-s + 0.609·43-s − 0.145·47-s + 18/7·49-s + 0.137·53-s + 0.132·57-s + 0.781·59-s + 0.512·61-s − 0.629·63-s − 0.244·67-s − 0.963·69-s − 0.949·71-s − 1.98·73-s − 2.84·77-s − 1.12·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(86700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(692.302\)
Root analytic conductor: \(26.3116\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 86700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 17 T + p T^{2} \) 1.73.r
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.22541569070282, −13.66346432854369, −13.25991773507476, −12.64229469276340, −12.25963466534783, −11.76818273635517, −11.40481893572894, −10.28332406476128, −10.00030122394284, −9.868102502326359, −9.111975501893397, −8.684535435019409, −8.334733443650692, −7.370634671117471, −7.041175109469325, −6.472084087168339, −6.068531684602004, −5.637269433577287, −4.423225537479012, −4.209103886885274, −3.492634137949953, −3.109584054696884, −2.480199833628796, −1.669827999290742, −0.8943731222478847, 0, 0.8943731222478847, 1.669827999290742, 2.480199833628796, 3.109584054696884, 3.492634137949953, 4.209103886885274, 4.423225537479012, 5.637269433577287, 6.068531684602004, 6.472084087168339, 7.041175109469325, 7.370634671117471, 8.334733443650692, 8.684535435019409, 9.111975501893397, 9.868102502326359, 10.00030122394284, 10.28332406476128, 11.40481893572894, 11.76818273635517, 12.25963466534783, 12.64229469276340, 13.25991773507476, 13.66346432854369, 14.22541569070282

Graph of the $Z$-function along the critical line