| L(s)  = 1  |     + 3-s         − 5·7-s     + 9-s     + 5·11-s                 + 19-s     − 5·21-s     − 8·23-s         + 27-s     + 3·29-s     + 8·31-s     + 5·33-s         − 3·37-s         − 5·41-s     + 4·43-s         − 47-s     + 18·49-s         + 53-s         + 57-s     + 6·59-s     + 4·61-s     − 5·63-s         − 2·67-s     − 8·69-s     − 8·71-s     − 17·73-s         − 25·77-s     − 10·79-s  + ⋯ | 
 
| L(s)  = 1  |     + 0.577·3-s         − 1.88·7-s     + 1/3·9-s     + 1.50·11-s                 + 0.229·19-s     − 1.09·21-s     − 1.66·23-s         + 0.192·27-s     + 0.557·29-s     + 1.43·31-s     + 0.870·33-s         − 0.493·37-s         − 0.780·41-s     + 0.609·43-s         − 0.145·47-s     + 18/7·49-s         + 0.137·53-s         + 0.132·57-s     + 0.781·59-s     + 0.512·61-s     − 0.629·63-s         − 0.244·67-s     − 0.963·69-s     − 0.949·71-s     − 1.98·73-s         − 2.84·77-s     − 1.12·79-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 86700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 - T \)  |    | 
 | 5 |  \( 1 \)  |    | 
 | 17 |  \( 1 \)  |    | 
| good | 7 |  \( 1 + 5 T + p T^{2} \)  |  1.7.f  | 
 | 11 |  \( 1 - 5 T + p T^{2} \)  |  1.11.af  | 
 | 13 |  \( 1 + p T^{2} \)  |  1.13.a  | 
 | 19 |  \( 1 - T + p T^{2} \)  |  1.19.ab  | 
 | 23 |  \( 1 + 8 T + p T^{2} \)  |  1.23.i  | 
 | 29 |  \( 1 - 3 T + p T^{2} \)  |  1.29.ad  | 
 | 31 |  \( 1 - 8 T + p T^{2} \)  |  1.31.ai  | 
 | 37 |  \( 1 + 3 T + p T^{2} \)  |  1.37.d  | 
 | 41 |  \( 1 + 5 T + p T^{2} \)  |  1.41.f  | 
 | 43 |  \( 1 - 4 T + p T^{2} \)  |  1.43.ae  | 
 | 47 |  \( 1 + T + p T^{2} \)  |  1.47.b  | 
 | 53 |  \( 1 - T + p T^{2} \)  |  1.53.ab  | 
 | 59 |  \( 1 - 6 T + p T^{2} \)  |  1.59.ag  | 
 | 61 |  \( 1 - 4 T + p T^{2} \)  |  1.61.ae  | 
 | 67 |  \( 1 + 2 T + p T^{2} \)  |  1.67.c  | 
 | 71 |  \( 1 + 8 T + p T^{2} \)  |  1.71.i  | 
 | 73 |  \( 1 + 17 T + p T^{2} \)  |  1.73.r  | 
 | 79 |  \( 1 + 10 T + p T^{2} \)  |  1.79.k  | 
 | 83 |  \( 1 + 8 T + p T^{2} \)  |  1.83.i  | 
 | 89 |  \( 1 + 18 T + p T^{2} \)  |  1.89.s  | 
 | 97 |  \( 1 + 14 T + p T^{2} \)  |  1.97.o  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.22541569070282, −13.66346432854369, −13.25991773507476, −12.64229469276340, −12.25963466534783, −11.76818273635517, −11.40481893572894, −10.28332406476128, −10.00030122394284, −9.868102502326359, −9.111975501893397, −8.684535435019409, −8.334733443650692, −7.370634671117471, −7.041175109469325, −6.472084087168339, −6.068531684602004, −5.637269433577287, −4.423225537479012, −4.209103886885274, −3.492634137949953, −3.109584054696884, −2.480199833628796, −1.669827999290742, −0.8943731222478847, 0, 
0.8943731222478847, 1.669827999290742, 2.480199833628796, 3.109584054696884, 3.492634137949953, 4.209103886885274, 4.423225537479012, 5.637269433577287, 6.068531684602004, 6.472084087168339, 7.041175109469325, 7.370634671117471, 8.334733443650692, 8.684535435019409, 9.111975501893397, 9.868102502326359, 10.00030122394284, 10.28332406476128, 11.40481893572894, 11.76818273635517, 12.25963466534783, 12.64229469276340, 13.25991773507476, 13.66346432854369, 14.22541569070282