Properties

Label 2-8624-1.1-c1-0-45
Degree $2$
Conductor $8624$
Sign $1$
Analytic cond. $68.8629$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·9-s + 11-s − 5·13-s − 6·17-s + 2·19-s − 6·23-s − 5·25-s − 5·27-s + 3·29-s + 8·31-s + 33-s + 2·37-s − 5·39-s + 6·41-s + 4·43-s + 6·47-s − 6·51-s − 12·53-s + 2·57-s − 3·59-s + 7·61-s + 13·67-s − 6·69-s + 12·71-s + 10·73-s − 5·75-s + ⋯
L(s)  = 1  + 0.577·3-s − 2/3·9-s + 0.301·11-s − 1.38·13-s − 1.45·17-s + 0.458·19-s − 1.25·23-s − 25-s − 0.962·27-s + 0.557·29-s + 1.43·31-s + 0.174·33-s + 0.328·37-s − 0.800·39-s + 0.937·41-s + 0.609·43-s + 0.875·47-s − 0.840·51-s − 1.64·53-s + 0.264·57-s − 0.390·59-s + 0.896·61-s + 1.58·67-s − 0.722·69-s + 1.42·71-s + 1.17·73-s − 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8624\)    =    \(2^{4} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(68.8629\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8624,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.649952975\)
\(L(\frac12)\) \(\approx\) \(1.649952975\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.000025899604980278126983009867, −7.15250298312213630874458995237, −6.39296506503414023858608741118, −5.80483055563975946398701373276, −4.85148366100737723154744563169, −4.27015678142307257426467066148, −3.43298578700714820715582949343, −2.39310123480641844699802744043, −2.19902236699105380741450477916, −0.57139773279138586482545680334, 0.57139773279138586482545680334, 2.19902236699105380741450477916, 2.39310123480641844699802744043, 3.43298578700714820715582949343, 4.27015678142307257426467066148, 4.85148366100737723154744563169, 5.80483055563975946398701373276, 6.39296506503414023858608741118, 7.15250298312213630874458995237, 8.000025899604980278126983009867

Graph of the $Z$-function along the critical line