Properties

Label 2-8624-1.1-c1-0-53
Degree $2$
Conductor $8624$
Sign $1$
Analytic cond. $68.8629$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s − 2·9-s + 11-s + 4·13-s − 3·15-s + 6·17-s + 2·19-s − 3·23-s + 4·25-s − 5·27-s − 6·29-s + 5·31-s + 33-s + 11·37-s + 4·39-s − 6·41-s − 8·43-s + 6·45-s + 6·51-s − 6·53-s − 3·55-s + 2·57-s − 9·59-s + 10·61-s − 12·65-s − 5·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s − 2/3·9-s + 0.301·11-s + 1.10·13-s − 0.774·15-s + 1.45·17-s + 0.458·19-s − 0.625·23-s + 4/5·25-s − 0.962·27-s − 1.11·29-s + 0.898·31-s + 0.174·33-s + 1.80·37-s + 0.640·39-s − 0.937·41-s − 1.21·43-s + 0.894·45-s + 0.840·51-s − 0.824·53-s − 0.404·55-s + 0.264·57-s − 1.17·59-s + 1.28·61-s − 1.48·65-s − 0.610·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8624\)    =    \(2^{4} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(68.8629\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8624,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.756298930\)
\(L(\frac12)\) \(\approx\) \(1.756298930\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.984160970521428842640406008347, −7.38510351141231969120632832405, −6.34570889225344780507838826204, −5.80750155243207811982157626971, −4.89113901035243351632315791369, −3.97411008767739240182954437363, −3.46347204407075861821751449554, −2.99165559308723446698105013962, −1.70848807533838726380425683703, −0.63715395674397493657863840222, 0.63715395674397493657863840222, 1.70848807533838726380425683703, 2.99165559308723446698105013962, 3.46347204407075861821751449554, 3.97411008767739240182954437363, 4.89113901035243351632315791369, 5.80750155243207811982157626971, 6.34570889225344780507838826204, 7.38510351141231969120632832405, 7.984160970521428842640406008347

Graph of the $Z$-function along the critical line