Properties

Label 2-8379-1.1-c1-0-44
Degree $2$
Conductor $8379$
Sign $1$
Analytic cond. $66.9066$
Root an. cond. $8.17964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 2·11-s + 6·13-s − 16-s − 8·17-s − 19-s + 2·22-s − 6·23-s − 5·25-s − 6·26-s + 6·29-s − 5·32-s + 8·34-s − 2·37-s + 38-s − 2·41-s − 4·43-s + 2·44-s + 6·46-s + 2·47-s + 5·50-s − 6·52-s + 6·53-s − 6·58-s + 4·59-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 0.603·11-s + 1.66·13-s − 1/4·16-s − 1.94·17-s − 0.229·19-s + 0.426·22-s − 1.25·23-s − 25-s − 1.17·26-s + 1.11·29-s − 0.883·32-s + 1.37·34-s − 0.328·37-s + 0.162·38-s − 0.312·41-s − 0.609·43-s + 0.301·44-s + 0.884·46-s + 0.291·47-s + 0.707·50-s − 0.832·52-s + 0.824·53-s − 0.787·58-s + 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8379 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8379\)    =    \(3^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(66.9066\)
Root analytic conductor: \(8.17964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8379,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7577506500\)
\(L(\frac12)\) \(\approx\) \(0.7577506500\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 8 T + p T^{2} \) 1.17.i
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.146377640435571044349460550987, −7.20228910784419817052518066587, −6.47237508788768692091623584934, −5.82994999187726437210022046143, −4.94711103783663801276664879859, −4.16098249749107196218869175841, −3.71769837034904988951400042275, −2.40542862152543239693569966338, −1.64028916967236157381138626713, −0.48349128478257683481484162786, 0.48349128478257683481484162786, 1.64028916967236157381138626713, 2.40542862152543239693569966338, 3.71769837034904988951400042275, 4.16098249749107196218869175841, 4.94711103783663801276664879859, 5.82994999187726437210022046143, 6.47237508788768692091623584934, 7.20228910784419817052518066587, 8.146377640435571044349460550987

Graph of the $Z$-function along the critical line