Properties

Label 2-82800-1.1-c1-0-46
Degree $2$
Conductor $82800$
Sign $1$
Analytic cond. $661.161$
Root an. cond. $25.7130$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 4·11-s + 6·13-s + 4·17-s − 2·19-s + 23-s − 2·29-s − 4·31-s − 2·37-s − 2·41-s + 10·43-s − 3·49-s − 12·53-s − 12·59-s − 6·61-s − 10·67-s + 8·71-s + 14·73-s − 8·77-s − 10·79-s − 12·83-s + 16·89-s − 12·91-s + 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.755·7-s + 1.20·11-s + 1.66·13-s + 0.970·17-s − 0.458·19-s + 0.208·23-s − 0.371·29-s − 0.718·31-s − 0.328·37-s − 0.312·41-s + 1.52·43-s − 3/7·49-s − 1.64·53-s − 1.56·59-s − 0.768·61-s − 1.22·67-s + 0.949·71-s + 1.63·73-s − 0.911·77-s − 1.12·79-s − 1.31·83-s + 1.69·89-s − 1.25·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82800\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(661.161\)
Root analytic conductor: \(25.7130\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 82800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.484765517\)
\(L(\frac12)\) \(\approx\) \(2.484765517\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.10911911363619, −13.49608447034733, −12.81904642562793, −12.61519319123556, −12.02400714708150, −11.44317082417379, −10.89460304577190, −10.65569325753774, −9.840124271347609, −9.363768433391210, −9.021502158409600, −8.519122289746752, −7.814432677734735, −7.384504814037178, −6.531380693806991, −6.319650059893136, −5.866999361154855, −5.191260428801903, −4.349040692536010, −3.857683205346403, −3.360390907547747, −2.924197275998339, −1.748419081187292, −1.390076015865048, −0.5318484666035818, 0.5318484666035818, 1.390076015865048, 1.748419081187292, 2.924197275998339, 3.360390907547747, 3.857683205346403, 4.349040692536010, 5.191260428801903, 5.866999361154855, 6.319650059893136, 6.531380693806991, 7.384504814037178, 7.814432677734735, 8.519122289746752, 9.021502158409600, 9.363768433391210, 9.840124271347609, 10.65569325753774, 10.89460304577190, 11.44317082417379, 12.02400714708150, 12.61519319123556, 12.81904642562793, 13.49608447034733, 14.10911911363619

Graph of the $Z$-function along the critical line