Properties

Label 2-82800-1.1-c1-0-87
Degree $2$
Conductor $82800$
Sign $-1$
Analytic cond. $661.161$
Root an. cond. $25.7130$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s + 2·11-s − 3·13-s − 19-s + 23-s − 31-s + 6·37-s − 4·41-s + 5·43-s + 10·47-s + 2·49-s − 4·53-s − 6·59-s + 61-s − 7·67-s − 4·71-s + 2·73-s − 6·77-s + 14·83-s + 2·89-s + 9·91-s + 7·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.13·7-s + 0.603·11-s − 0.832·13-s − 0.229·19-s + 0.208·23-s − 0.179·31-s + 0.986·37-s − 0.624·41-s + 0.762·43-s + 1.45·47-s + 2/7·49-s − 0.549·53-s − 0.781·59-s + 0.128·61-s − 0.855·67-s − 0.474·71-s + 0.234·73-s − 0.683·77-s + 1.53·83-s + 0.211·89-s + 0.943·91-s + 0.710·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82800\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(661.161\)
Root analytic conductor: \(25.7130\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 82800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + T + p T^{2} \) 1.19.b
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.25501009886729, −13.46725585463485, −13.39715125969518, −12.62486102733714, −12.18465824555676, −12.00673475797133, −11.09894618629521, −10.78341190558973, −10.11148505884878, −9.652705795709259, −9.246788901956346, −8.853171483266747, −8.087795244491725, −7.494770335354868, −7.085067386597513, −6.414311180817720, −6.133277463767044, −5.440157928094211, −4.784398185797733, −4.169758108150684, −3.654268272107425, −2.932144755781320, −2.506823846101119, −1.664215575381839, −0.7922580600373709, 0, 0.7922580600373709, 1.664215575381839, 2.506823846101119, 2.932144755781320, 3.654268272107425, 4.169758108150684, 4.784398185797733, 5.440157928094211, 6.133277463767044, 6.414311180817720, 7.085067386597513, 7.494770335354868, 8.087795244491725, 8.853171483266747, 9.246788901956346, 9.652705795709259, 10.11148505884878, 10.78341190558973, 11.09894618629521, 12.00673475797133, 12.18465824555676, 12.62486102733714, 13.39715125969518, 13.46725585463485, 14.25501009886729

Graph of the $Z$-function along the critical line