Properties

Label 2-8208-1.1-c1-0-16
Degree $2$
Conductor $8208$
Sign $1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 3·7-s − 4·11-s + 13-s − 4·17-s − 19-s − 4·23-s + 4·25-s − 10·31-s − 9·35-s + 5·37-s − 7·41-s + 8·43-s − 2·47-s + 2·49-s + 6·53-s + 12·55-s + 10·59-s + 2·61-s − 3·65-s − 4·67-s + 13·71-s + 15·73-s − 12·77-s − 2·79-s + 13·83-s + 12·85-s + ⋯
L(s)  = 1  − 1.34·5-s + 1.13·7-s − 1.20·11-s + 0.277·13-s − 0.970·17-s − 0.229·19-s − 0.834·23-s + 4/5·25-s − 1.79·31-s − 1.52·35-s + 0.821·37-s − 1.09·41-s + 1.21·43-s − 0.291·47-s + 2/7·49-s + 0.824·53-s + 1.61·55-s + 1.30·59-s + 0.256·61-s − 0.372·65-s − 0.488·67-s + 1.54·71-s + 1.75·73-s − 1.36·77-s − 0.225·79-s + 1.42·83-s + 1.30·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.004482692\)
\(L(\frac12)\) \(\approx\) \(1.004482692\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 4 T + p T^{2} \) 1.17.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 13 T + p T^{2} \) 1.71.an
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 13 T + p T^{2} \) 1.83.an
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.942686672713278059624793165756, −7.33190795172537514479883803747, −6.59048067279949816488608563279, −5.50206877930979521961810516088, −5.02945085223159448371343331136, −4.14185457532826496865186803931, −3.77802169035175164144725969419, −2.59115781866271828738401926429, −1.84734244626117388227365069350, −0.47833317011550482096195345405, 0.47833317011550482096195345405, 1.84734244626117388227365069350, 2.59115781866271828738401926429, 3.77802169035175164144725969419, 4.14185457532826496865186803931, 5.02945085223159448371343331136, 5.50206877930979521961810516088, 6.59048067279949816488608563279, 7.33190795172537514479883803747, 7.942686672713278059624793165756

Graph of the $Z$-function along the critical line