Properties

Label 2-80850-1.1-c1-0-103
Degree $2$
Conductor $80850$
Sign $-1$
Analytic cond. $645.590$
Root an. cond. $25.4084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s − 11-s + 12-s − 4·13-s + 16-s − 18-s − 8·19-s + 22-s − 6·23-s − 24-s + 4·26-s + 27-s + 6·29-s + 4·31-s − 32-s − 33-s + 36-s − 8·37-s + 8·38-s − 4·39-s − 6·41-s + 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s − 1.10·13-s + 1/4·16-s − 0.235·18-s − 1.83·19-s + 0.213·22-s − 1.25·23-s − 0.204·24-s + 0.784·26-s + 0.192·27-s + 1.11·29-s + 0.718·31-s − 0.176·32-s − 0.174·33-s + 1/6·36-s − 1.31·37-s + 1.29·38-s − 0.640·39-s − 0.937·41-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(645.590\)
Root analytic conductor: \(25.4084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31002071188777, −13.80383116068818, −13.29964279756915, −12.52316992121720, −12.28338920447862, −11.90437552230824, −11.03821910730956, −10.57865362747999, −10.16458695884558, −9.768023629300971, −9.207647280412237, −8.471361748406100, −8.311882259591677, −7.832197511193266, −7.065825574845927, −6.704414651340833, −6.209376486019220, −5.345005262110409, −4.878572730481551, −4.052362921276137, −3.714542476172970, −2.605614613144412, −2.402883737525071, −1.825748074976116, −0.7905362873623260, 0, 0.7905362873623260, 1.825748074976116, 2.402883737525071, 2.605614613144412, 3.714542476172970, 4.052362921276137, 4.878572730481551, 5.345005262110409, 6.209376486019220, 6.704414651340833, 7.065825574845927, 7.832197511193266, 8.311882259591677, 8.471361748406100, 9.207647280412237, 9.768023629300971, 10.16458695884558, 10.57865362747999, 11.03821910730956, 11.90437552230824, 12.28338920447862, 12.52316992121720, 13.29964279756915, 13.80383116068818, 14.31002071188777

Graph of the $Z$-function along the critical line