Properties

Label 2-7938-1.1-c1-0-39
Degree $2$
Conductor $7938$
Sign $1$
Analytic cond. $63.3852$
Root an. cond. $7.96148$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 4·13-s + 16-s + 6·17-s − 2·19-s + 3·23-s − 5·25-s − 4·26-s + 6·29-s − 5·31-s − 32-s − 6·34-s + 8·37-s + 2·38-s + 3·41-s + 2·43-s − 3·46-s − 3·47-s + 5·50-s + 4·52-s − 6·53-s − 6·58-s + 12·59-s − 8·61-s + 5·62-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 1.10·13-s + 1/4·16-s + 1.45·17-s − 0.458·19-s + 0.625·23-s − 25-s − 0.784·26-s + 1.11·29-s − 0.898·31-s − 0.176·32-s − 1.02·34-s + 1.31·37-s + 0.324·38-s + 0.468·41-s + 0.304·43-s − 0.442·46-s − 0.437·47-s + 0.707·50-s + 0.554·52-s − 0.824·53-s − 0.787·58-s + 1.56·59-s − 1.02·61-s + 0.635·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7938\)    =    \(2 \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(63.3852\)
Root analytic conductor: \(7.96148\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7938,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.637906200\)
\(L(\frac12)\) \(\approx\) \(1.637906200\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.069642655004683675584952567559, −7.27611978121869643220459621962, −6.47774436693225369667869317565, −5.91126990195501981664003203735, −5.21766716670261490424785581295, −4.14057007448049792925637458303, −3.44181280440197341091078848814, −2.60462880871233570917807884019, −1.54811197421885365449497759949, −0.75499762600709429772212805596, 0.75499762600709429772212805596, 1.54811197421885365449497759949, 2.60462880871233570917807884019, 3.44181280440197341091078848814, 4.14057007448049792925637458303, 5.21766716670261490424785581295, 5.91126990195501981664003203735, 6.47774436693225369667869317565, 7.27611978121869643220459621962, 8.069642655004683675584952567559

Graph of the $Z$-function along the critical line