Properties

Label 2-78650-1.1-c1-0-57
Degree $2$
Conductor $78650$
Sign $-1$
Analytic cond. $628.023$
Root an. cond. $25.0603$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 8-s + 9-s − 2·12-s − 13-s + 16-s + 2·17-s − 18-s + 4·19-s + 6·23-s + 2·24-s + 26-s + 4·27-s + 6·29-s − 32-s − 2·34-s + 36-s − 8·37-s − 4·38-s + 2·39-s − 10·41-s + 8·43-s − 6·46-s + 6·47-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.577·12-s − 0.277·13-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.917·19-s + 1.25·23-s + 0.408·24-s + 0.196·26-s + 0.769·27-s + 1.11·29-s − 0.176·32-s − 0.342·34-s + 1/6·36-s − 1.31·37-s − 0.648·38-s + 0.320·39-s − 1.56·41-s + 1.21·43-s − 0.884·46-s + 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78650\)    =    \(2 \cdot 5^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(628.023\)
Root analytic conductor: \(25.0603\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
13 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.28991049623468, −13.83794349220412, −13.11486508039040, −12.53828377466744, −12.11355242893184, −11.73076646946852, −11.26157662323872, −10.72871198211254, −10.35153059518095, −9.811718702790439, −9.343836124865788, −8.558710605162951, −8.389709465009713, −7.425487979618324, −7.127880852477992, −6.628258877623650, −5.972431113726924, −5.510309201278271, −4.954826468635193, −4.543491475597802, −3.397944547267792, −3.089421051632039, −2.226542242549076, −1.307088536486372, −0.8327832174442314, 0, 0.8327832174442314, 1.307088536486372, 2.226542242549076, 3.089421051632039, 3.397944547267792, 4.543491475597802, 4.954826468635193, 5.510309201278271, 5.972431113726924, 6.628258877623650, 7.127880852477992, 7.425487979618324, 8.389709465009713, 8.558710605162951, 9.343836124865788, 9.811718702790439, 10.35153059518095, 10.72871198211254, 11.26157662323872, 11.73076646946852, 12.11355242893184, 12.53828377466744, 13.11486508039040, 13.83794349220412, 14.28991049623468

Graph of the $Z$-function along the critical line