Properties

Label 2-78650-1.1-c1-0-72
Degree $2$
Conductor $78650$
Sign $-1$
Analytic cond. $628.023$
Root an. cond. $25.0603$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 2·7-s − 8-s − 2·9-s + 12-s + 13-s − 2·14-s + 16-s + 17-s + 2·18-s + 2·19-s + 2·21-s + 5·23-s − 24-s − 26-s − 5·27-s + 2·28-s + 29-s − 6·31-s − 32-s − 34-s − 2·36-s + 2·37-s − 2·38-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.755·7-s − 0.353·8-s − 2/3·9-s + 0.288·12-s + 0.277·13-s − 0.534·14-s + 1/4·16-s + 0.242·17-s + 0.471·18-s + 0.458·19-s + 0.436·21-s + 1.04·23-s − 0.204·24-s − 0.196·26-s − 0.962·27-s + 0.377·28-s + 0.185·29-s − 1.07·31-s − 0.176·32-s − 0.171·34-s − 1/3·36-s + 0.328·37-s − 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78650\)    =    \(2 \cdot 5^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(628.023\)
Root analytic conductor: \(25.0603\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 13 T + p T^{2} \) 1.53.an
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.38875704347992, −13.85699434433777, −13.33788824955281, −12.78808018819971, −12.17141049454755, −11.58051298797279, −11.20165140798694, −10.89450182330524, −10.13730707565963, −9.683684256500042, −9.062711039609837, −8.727952408111927, −8.224182464351450, −7.805602241420012, −7.246943064935545, −6.725792570816274, −6.026728991726253, −5.334846081839746, −5.070396674931781, −4.102038562203424, −3.484648008703256, −2.929107709928102, −2.312898736542247, −1.613528916153506, −0.9935795074284654, 0, 0.9935795074284654, 1.613528916153506, 2.312898736542247, 2.929107709928102, 3.484648008703256, 4.102038562203424, 5.070396674931781, 5.334846081839746, 6.026728991726253, 6.725792570816274, 7.246943064935545, 7.805602241420012, 8.224182464351450, 8.727952408111927, 9.062711039609837, 9.683684256500042, 10.13730707565963, 10.89450182330524, 11.20165140798694, 11.58051298797279, 12.17141049454755, 12.78808018819971, 13.33788824955281, 13.85699434433777, 14.38875704347992

Graph of the $Z$-function along the critical line